94 resultados para Sentinel organisms
Resumo:
The purpose of this study was to evaluate the use of sentinel node biopsy (SNB) in the axillary nodal staging in breast cancer. A special interest was in sentinel node (SN) visualization, intraoperative detection of SN metastases, the feasibility of SNB in patients with pure tubular carcinoma (PTC) and in those with ductal carcinoma in situ (DCIS) in core needle biopsy (CNB) and additionally in the detection of axillary recurrences after tumour negative SNB. Patients and methods. 1580 clinically stage T1-T2 node-negative breast cancer patients, who underwent lymphoscintigraphy (LS), SNB and breast surgery between June 2000 - 2004 at the Breast Surgery Unit. The CNB samples were obtained from women, who participated the biennial, population based mammography screening at the Mammography Screening Centre of Helsinki 2001 - 2004.In the follow- up, a cohort of 205 patients who avoided AC due to negative SNB findings were evaluated using ultrasonography one and three years after breast surgery. Results. The visualization rate of axillary SNs was not enhanced by adjusting radioisotope doses according to BMI. The sensitivity of the intraoperative diagnosis of SN metastases of invasive lobular carcinoma (ILC) was higher, 87%, with rapid, intraoperative immunohistochemistry (IHC) group compared to 66% without it. The prevalence of tumour positive SN findings was 27% in the 33 patients with breast tumours diagnosed as PTC. The median histological tumour size was similar in patients with or without axillary metastases. After the histopathological review, six out of 27 patients with true PTC had axillary metastases, with no significant change in the risk factors for axillary metastases. Of the 67 patients with DCIS in the preoperative percutaneous biopsy specimen , 30% had invasion in the surgical specimen. The strongest predictive factor for invasion was the visibility of the lesion in ultrasound. In the three year follow-up, axillary recurrence was found in only two (0.5%) of the total of 383 ultrasound examinations performed during the study, and only one of the 369 examinations revealed cancer. None of the ultrasound examinations were false positive, and no study participant was subjected to unnecessary surgery due to ultrasound monitoring. Conclusions. Adjusting the dose of the radioactive tracer according to patient BMI does not increase the visualization rate of SNs. The intraoperative diagnosis of SN metastases is enhanced by rapid IHC particularly in patients with ILC. SNB seems to be a feasible method for axillary staging of pure tubular carcinoma in patients with a low prevalence of axillary metatastases. SNB also appears to be a sensible method in patients undergoing mastectomy due to DCIS in CNB. It also seems useful in patients with lesions visible in breast US. During follow-up, routine monitoring of the ipsilateral axilla using US is not worthwhile among breast cancer patients who avoided AC due to negative SN findings.
Resumo:
Yhteenveto: Kemikaalien teollisesta käsittelystä vesieliöille aiheutuvien riskien arviointi mallin avulla.
Resumo:
In the thesis it is discussed in what ways concepts and methodology developed in evolutionary biology can be applied to the explanation and research of language change. The parallel nature of the mechanisms of biological evolution and language change is explored along with the history of the exchange of ideas between these two disciplines. Against this background computational methods developed in evolutionary biology are taken into consideration in terms of their applicability to the study of historical relationships between languages. Different phylogenetic methods are explained in common terminology, avoiding the technical language of statistics. The thesis is on one hand a synthesis of earlier scientific discussion, and on the other an attempt to map out the problems of earlier approaches in addition to finding new guidelines in the study of language change on their basis. Primarily literature about the connections between evolutionary biology and language change, along with research articles describing applications of phylogenetic methods into language change have been used as source material. The thesis starts out by describing the initial development of the disciplines of evolutionary biology and historical linguistics, a process which right from the beginning can be seen to have involved an exchange of ideas concerning the mechanisms of language change and biological evolution. The historical discussion lays the foundation for the handling of the generalised account of selection developed during the recent few decades. This account is aimed for creating a theoretical framework capable of explaining both biological evolution and cultural change as selection processes acting on self-replicating entities. This thesis focusses on the capacity of the generalised account of selection to describe language change as a process of this kind. In biology, the mechanisms of evolution are seen to form populations of genetically related organisms through time. One of the central questions explored in this thesis is whether selection theory makes it possible to picture languages are forming populations of a similar kind, and what a perspective like this can offer to the understanding of language in general. In historical linguistics, the comparative method and other, complementing methods have been traditionally used to study the development of languages from a common ancestral language. Computational, quantitative methods have not become widely used as part of the central methodology of historical linguistics. After the fading of a limited popularity enjoyed by the lexicostatistical method since the 1950s, only in the recent years have also the computational methods of phylogenetic inference used in evolutionary biology been applied to the study of early language history. In this thesis the possibilities offered by the traditional methodology of historical linguistics and the new phylogenetic methods are compared. The methods are approached through the ways in which they have been applied to the Indo-European languages, which is the most thoroughly investigated language family using both the traditional and the phylogenetic methods. The problems of these applications along with the optimal form of the linguistic data used in these methods are explored in the thesis. The mechanisms of biological evolution are seen in the thesis as parallel in a limited sense to the mechanisms of language change, however sufficiently so that the development of a generalised account of selection is deemed as possibly fruiful for understanding language change. These similarities are also seen to support the validity of using phylogenetic methods in the study of language history, although the use of linguistic data and the models of language change employed by these models are seen to await further development.
Resumo:
Cell division, which leads to the birth of two daughter cells, is essential for the growth and development of all organisms. The reproduction occurs in a series of events separated in time, designated as the cell cycle. The cell cycle progression is controlled by the activity of cyclin-dependent kinases (CDK). CDKs pair with cyclins to become catalytically active and phosphorylate a broad range of substrates required for cell cycle progression. In addition to cyclins, CDKs are regulated by inhibitory and activating phosphorylation events, binding to CDK-inhibitory proteins (CKI), and also by subcellular localization. The control of the CDK activity is crucial in preventing unscheduled progression of the cell cycle with mistakes having potentially hazardous consequences, such as uncontrolled proliferation of the cells, a hallmark of cancer. The mammalian cell cycle is a target of several DNA tumor viruses that can deregulate the host s cell cycle with their viral oncoproteins. A human herpesvirus called Kaposi s sarcoma herpesvirus (KSHV) is implicated in the cause of Kaposi s sarcoma (KS) and lymphoproliferative diseases such as primary effusion lymphomas (PEL). KSHV has pirated several cell cycle regulatory genes that it uses to manipulate its host cell and to induce proliferation. Among these gene products is a cellular cyclin D homologue, called viral cyclin (v-cyclin) that can activate cellular CDKs leading to the phosphorylation of multiple target proteins. Intriguingly, PELs that are naturally infected with KSHV consistently express high levels of CDK inhibitor protein p27Kip1 and still proliferate actively. The aim of this study was to investigate v-cyclin complexes and their activity in PELs, and search for an explanation why CKIs, such as p27Kip1 and p21Cip1 are unable to inhibit cell proliferation in this type of lymphoma. In this study, we found that v-cyclin binds to p27Kip1 in PELs, and confirmed this novel interaction also in the overexpression models. We observed that p27Kip1 associated with v-cyclin was also phosphorylated by a v-cyclin-associated kinase and identified cellular CDK6 as the major kinase partner of v-cyclin responsible for this phosphorylation. Analysis of the p27Kip1 residues targeted by v-cyclin-CDK6 revealed that serine 10 (S10) is the major phosphorylation site during the latent phase of the KSHV replication cycle. This phosphorylation led to the relocalization of p27Kip1 to the cytoplasm, where it is unable to inhibit nuclear cyclin-CDK complexes. In the lytic phase of the viral replication cycle, the preferred phosphorylation site on p27Kip1 by v-cyclin-CDK6 changed to threonine 187 (T187). T187 phosphorylation has been shown to lead to ubiquitin-mediated degradation of p27Kip1 and downregulation of p27Kip1 was also observed here. v-cyclin was detected also in complex with p21Cip1, both in overexpression models and in PELs. Phosphorylation of p21Cip1 on serine 130 (S130) site by v-cyclin-CDK6 functionally inactivated p21Cip1 and led to the circumvention of G1 arrest induced by p21Cip1. Moreover, p21Cip1 phosphorylated by v-cyclin-associated kinase showed reduced binding to CDK2, which provides a plausible explanation why p21Cip1 is unable to inhibit cell cycle progression upon v-cyclin expression. Our findings clarify the mechanisms on how v-cyclin evades the inhibition of cell cycle inhibitors and suggests an explanation to the uncontrolled proliferation of KSHV-infected cells.
Resumo:
The genus Actinomyces consists of a heterogeneous group of gram-positive, mainly facultatively anaerobic or microaerobic rods showing various degrees of branching. In the oral cavity, streptococci and Actinomyces form a fundamental component of the indigenous microbiota, being among initial colonizers in polymicrobial biofilms. The significance of the genus Actinomyces is based on the capability of species to adhere to surfaces such as on teeth and to co-aggregate with other bacteria. Identification of Actinomyces species has mainly been based on only a few biochemical characteristics, such as pigmentation and catalase production, or on the use of a single commercial kit. The limited identification of oral Actinomyces isolates to species level has hampered knowledge of their role both in health and disease. In recent years, Actinomyces and related organisms have attracted the attention of clinical microbiologists because of a growing awareness of their presence in clinical specimens and their association with disease. This series of studies aimed to amplify the identification methods for Actinomyces species. With the newly developed identification scheme, the age-related occurrence of Actinomyces in healthy mouths of infants and their distribution in failed dental implants was investigated. Adhesion of Actinomyces species to titanium surfaces processed in various ways was studied in vitro. The results of phenotypic identification methods indicated a relatively low applicability of commercially available test kits for reliable identification within the genus Actinomyces. However, in the study of conventional phenotypic methods, it was possible to develop an identification scheme that resulted in accurate differentiation of Actinomyces and closely related species, using various different test methods. Genotypic methods based on 16S rRNA sequence analysis of Actinomyces proved to be a useful method for genus level identification and further clarified the species level identification with phenotypic methods. The results of the study of infants showed that the isolation frequency of salivary Actinomyces species increased according to age: thirty-one percent of the infants at 2 months but 97% at 2 years of age were positive for Actinomyces. A. odontolyticus was the most prominent Actinomyces colonizer during the study period followed in frequency by A. naeslundii and A. viscosus. In the study of explanted dental implants, Actinomyces was the most prevalent bacterial genus, colonizing 94% of the fixtures. Also in the implants A. odontolyticus was revealed as the most common Actinomyces species. It was present in 84% of Actinomyces -positive fixtures followed in frequency by A. naeslundii, A. viscosus and A. israelii. In an in vitro study of titanium surfaces, different Actinomyces species showed variation regarding their adhesion to titanium. Surface roughness as well as albumin coating of titanium had significant effects on adhesion. The use of improved phenotypic and molecular diagnostic methods increased the accuracy of the identification of the Actinomyces to species level. This facilitated an investigation of their occurrence and distribution in oral specimens in both health and disease.
Resumo:
Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.
Resumo:
Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail.
Resumo:
Ozone (O3) is a reactive gas present in the troposphere in the range of parts per billion (ppb), i.e. molecules of O3 in 109 molecules of air. Its strong oxidative capacity makes it a key element in tropospheric chemistry and a threat to the integrity of materials, including living organisms. Knowledge and control of O3 levels are an issue in relation to indoor air quality, building material endurance, respiratory human disorders, and plant performance. Ozone is also a greenhouse gas and its abundance is relevant to global warming. The interaction of the lower troposphere with vegetated landscapes results in O3 being removed from the atmosphere by reactions that lead to the oxidation of plant-related components. Details on the rate and pattern of removal on different landscapes as well as the ultimate mechanisms by which this occurs are not fully resolved. This thesis analysed the controlling processes of the transfer of ozone at the air-plant interface. Improvement in the knowledge of these processes benefits the prediction of both atmospheric removal of O3 and its impact on vegetation. This study was based on the measurement and analysis of multi-year field measurements of O3 flux to Scots pine (Pinus sylvestris L.) foliage with a shoot-scale gas-exchange enclosure system. In addition, the analyses made use of simultaneous CO2 and H2O exchange, canopy-scale O3, CO2 and H2O exchange, foliage surface wetness, and environmental variables. All data was gathered at the SMEAR measuring station (southern Finland). Enclosure gas-exchange techniques such as those commonly used for the measure of CO2 and water vapour can be applied to the measure of ozone gas-exchange in the field. Through analysis of the system dynamics the occurring disturbances and noise can be identified. In the system used in this study, the possible artefacts arising from the ozone reactivity towards the system materials in combination with low background concentrations need to be taken into account. The main artefact was the loss of ozone towards the chamber walls, which was found to be very variable. The level of wall-loss was obtained from simultaneous and continuous measurements, and was included in the formulation of the mass balance of O3 concentration inside the chamber. The analysis of the field measurements in this study show that the flux of ozone to the Scots pine foliage is generated in about equal proportions by stomatal and non-stomatal controlled processes. Deposition towards foliage and forest is sustained also during night and winter when stomatal gas-exchange is low or absent. The non-stomatal portion of the flux was analysed further. The pattern of flux in time was found to be an overlap of the patterns of biological activity and presence of wetness in the environment. This was seen to occur both at the shoot and canopy scale. The presence of wetness enhanced the flux not only in the presence of liquid droplets but also during existence of a moisture film on the plant surfaces. The existence of these films and their relation to the ozone sinks was determined by simultaneous measurements of leaf surface wetness and ozone flux. The results seem to suggest ozone would be reacting at the foliage surface and the reaction rate would be mediated by the presence of surface wetness. Alternative mechanisms were discussed, including nocturnal stomatal aperture and emission of reactive volatile compounds. The prediction of the total flux could thus be based on a combination of a model of stomatal behaviour and a model of water absorption on the foliage surfaces. The concepts behind the division of stomatal and non-stomatal sinks were reconsidered. This study showed that it is theoretically possible that a sink located before or near the stomatal aperture prevents or diminishes the diffusion of ozone towards the intercellular air space of the mesophyll. This obstacle to stomatal diffusion happens only under certain conditions, which include a very low presence of reaction sites in the mesophyll, an extremely strong sink located on the outer surfaces or stomatal pore. The relevance, or existence, of this process in natural conditions would need to be assessed further. Potentially strong reactions were considered, including dissolved sulphate, volatile organic compounds, and apoplastic ascorbic acid. Information on the location and the relative abundance of these compounds would be valuable. The highest total flux towards the foliage and forest happens when both the plant activity and ambient moisture are high. The highest uptake into the interior of the foliage happens at large stomatal apertures, provided that scavenging reactions located near the stomatal pore are weak or non-existent. The discussion covers the methodological developments of this study, the relevance of the different controlling factors of ozone flux, the partition amongst its component, and the possible mechanisms of non-stomatal uptake.
Resumo:
In bacteria resistance to heavy metals is mainly achieved through active efflux, but also sequestration with proteins or as insoluble compounds is used. Although numerous studies have dealt with zinc, cadmium and lead resistance mechanisms in bacteria, it has still remained unclear how different transporters are integrated into an effective homeostasis/resistance network and whether specific mechanisms for lead sequestration exist. Furthermore, since metals are toxic not only to bacteria but to higher organisms as well, it is important to be able to estimate possible biological effects of heavy metals in the environment. This could be done by determining the bioavailable amount of the metals in the environment with bacterial bioreporters. That is, one can employ bacteria that respond to metal contamination by a measurable signal to assess the property of metals to cross biological membranes and to cause harmful effects in a possibly polluted environment. In this thesis a new lead resistance mechanism is described, interplay between CBA transporters and P-type ATPases in zinc and cadmium resistance is presented and finally the acquired knowledge is used to construct bacterial bioreporters for heavy metals with increased sensitivity and specificity. The new lead resistance model employs a P-type ATPase that removes Pb2+ ions from the cytoplasm and a phosphatase that produces inorganic phosphate for lead sequestration in the periplasm. This was the first study where the molecular mechanism of lead sequestration has been described. Characterization of two P-type ATPases and two CBA transporters showed that resistance mechanisms for Zn2+ and Cd2+ are somewhat different than for Pb2+ as these metals cannot be sequestered as insoluble compounds as easily. Resistance to Zn2+ was conferred merely by the CBA transporter that could export both cytoplasmic and periplasmic ions; whereas, full resistance to Cd2+ required interplay of a P-type ATPase that exported cytoplasmic ions to periplasm and a CBA transporter that further exported periplasmic ions to the outside. The knowledge on functionality of the transporters and metal-inducible promoters was exploited in bioreporter technology. A transporter-deficient bioreporter strain that lacked exporters for Zn2+/Cd2+/Pb2+ could detect up to 45-fold lower metal concentrations than its wild type counterpart due to the accumulation of metals in the cell. The broad specificity issue of bioreporters was overcome by using Zn-specific promoter as a sensor element, thus achieving Zn-specific bioreporter.
Resumo:
The development of biotechnology techniques in plant breeding and the new commercial applications have raised public and scientific concerns about the safety of genetically modified (GM) crops and trees. To find out the feasibility of these new technologies in the breeding of commercially important Finnish hardwood species and to estimate the ecological risks of the produced transgenic plants, the experiments of this study have been conducted as a part of a larger project focusing on the risk assessment of GM-trees. Transgenic Betula pendula and Populus trees were produced via Agrobacterium mediated transformation. Stilbene synthase (STS) gene from pine (Pinus sylvestris) and chitinase gene from sugar beet (Beta vulgaris) were transferred to (hybrid) aspen and birch, respectively, to improve disease resistance against fungal pathogens. To modify lignin biosynthesis, a 4-coumarate:coenzyme A ligase (4CL) gene fragment in antisense orientation was introduced into two birch clones. In in vitro test, one transgenic aspen line expressing pine STS gene showed increased resistance to decay fungus Phellinus tremulae. In the field, chitinase transgenic birch lines were more susceptible to leaf spot (Pyrenopeziza betulicola) than the non-transgenic control clone while the resistance against birch rust (Melampsoridium betulinum) was improved. No changes in the content or composition of lignin were detected in the 4CL antisense birch lines. In order to evaluate the ecological effects of the produced GM trees on non-target organisms, an in vitro mycorrhiza experiment with Paxillus involutus and a decomposition experiment in the field were performed. The expression of a transgenic chitinase did not disturb the establishment of mycorrhizal symbiosis between birch and P. involutus in vitro. 4CL antisense transformed birch lines showed retarded root growth but were able to form normal ectomycorrhizal associations with the mycorrhizal fungus in vitro. 4CL lines also showed normal litter decomposition. Unexpected growth reductions resulting from the gene transformation were observed in chitinase transgenic and 4CL antisense birch lines. These results indicate that genetic engineering can provide a tool in increasing disease resistance in Finnish tree species. More extensive data with several ectomycorrhizal species is needed to evaluate the consequences of transgene expression on beneficial plant-fungus symbioses. The potential pleiotropic effects of the transgene should also be taken into account when considering the safety of transgenic trees.