56 resultados para Identification parameters
Resumo:
This thesis presents a highly sensitive genome wide search method for recessive mutations. The method is suitable for distantly related samples that are divided into phenotype positives and negatives. High throughput genotype arrays are used to identify and compare homozygous regions between the cohorts. The method is demonstrated by comparing colorectal cancer patients against unaffected references. The objective is to find homozygous regions and alleles that are more common in cancer patients. We have designed and implemented software tools to automate the data analysis from genotypes to lists of candidate genes and to their properties. The programs have been designed in respect to a pipeline architecture that allows their integration to other programs such as biological databases and copy number analysis tools. The integration of the tools is crucial as the genome wide analysis of the cohort differences produces many candidate regions not related to the studied phenotype. CohortComparator is a genotype comparison tool that detects homozygous regions and compares their loci and allele constitutions between two sets of samples. The data is visualised in chromosome specific graphs illustrating the homozygous regions and alleles of each sample. The genomic regions that may harbour recessive mutations are emphasised with different colours and a scoring scheme is given for these regions. The detection of homozygous regions, cohort comparisons and result annotations are all subjected to presumptions many of which have been parameterized in our programs. The effect of these parameters and the suitable scope of the methods have been evaluated. Samples with different resolutions can be balanced with the genotype estimates of their haplotypes and they can be used within the same study.
Resumo:
The present challenge in drug discovery is to synthesize new compounds efficiently in minimal time. The trend is towards carefully designed and well-characterized compound libraries because fast and effective synthesis methods easily produce thousands of new compounds. The need for rapid and reliable analysis methods is increased at the same time. Quality assessment, including the identification and purity tests, is highly important since false (negative or positive) results, for instance in tests of biological activity or determination of early-ADME parameters in vitro (the pharmacokinetic study of drug absorption, distribution, metabolism, and excretion), must be avoided. This thesis summarizes the principles of classical planar chromatographic separation combined with ultraviolet (UV) and mass spectrometric (MS) detection, and introduces powerful, rapid, easy, low-cost, and alternative tools and techniques for qualitative and quantitative analysis of small drug or drug-like molecules. High performance thin-layer chromatography (HPTLC) was introduced and evaluated for fast semi-quantitative assessment of the purity of synthesis target compounds. HPTLC methods were compared with the liquid chromatography (LC) methods. Electrospray ionization mass spectrometry (ESI MS) and atmospheric pressure matrix-assisted laser desorption/ionization MS (AP MALDI MS) were used to identify and confirm the product zones on the plate. AP MALDI MS was rapid, and easy to carry out directly on the plate without scraping. The PLC method was used to isolate target compounds from crude synthesized products and purify them for bioactivity and preliminary ADME tests. Ultra-thin-layer chromatography (UTLC) with AP MALDI MS and desorption electrospray ionization mass spectrometry (DESI MS) was introduced and studied for the first time. Because of the thinner adsorbent layer, the monolithic UTLC plate provided 10 100 times better sensitivity in MALDI analysis than did HPTLC plates. The limits of detection (LODs) down to low picomole range were demonstrated for UTLC AP MALDI and UTLC DESI MS. In a comparison of AP and vacuum MALDI MS detection for UTLC plates, desorption from the irregular surface of the plates with the combination of an external AP MALDI ion source and an ion trap instrument provided clearly less variation in mass accuracy than the vacuum MALDI time-of-flight (TOF) instrument. The performance of the two-dimensional (2D) UTLC separation with AP MALDI MS method was studied for the first time. The influence of the urine matrix on the separation and the repeatability was evaluated with benzodiazepines as model substances in human urine. The applicability of 2D UTLC AP MALDI MS was demonstrated in the detection of metabolites in an authentic urine sample.
Resumo:
Atherosclerosis is the main underlying pathology of coronary heart disease. Coronary heart disease is a serious health problem in Finland, and it is the leading cause of morbidity and mortality in industrialized countries. Psychological stress correlates with coronary heart disease events – myocardial infarction and sudden death, which are the most common clinical syndromes of atherosclerotic narrowing of arteries. The present series of studies examines the interaction between stress and endothelial function in relation to atherosclerosis. The study also aims to give new information on the mechanisms through which stress has its effect on atherosclerosis progression, focusing on possible relations between psychological stress and the functioning of the endothelium. Our project is based on data from one of the largest national epidemiological studies, the Cardiovascular Risk in Young Finns study, which has monitored the development of risk factors for coronary heart disease in 3596 young adults since 1980. The present study combines experimental stress research with epidemiology and uses an advanced method for examining atherosclerosis development in healthy subjects (intima-media thickness ultrasound measurement). The physiological parameters used were heart rate, respiratory sinus arrhythmia and pre-ejection period. Chronic stress was assessed by vital exhaustion. The ultrasound measurements that served as the indexes of preclinical atherosclerosis were carotid intima-media thickness, brachial flow-mediated dilatation and carotid artery compliance. The effects of cardiovascular risk factors found to be important were taken into account: serum cholesterols level, triglyceride level, serum insulin level and systolic and diastolic blood pressure. There were 69, 1596, 81 and 1721 participants in studies I-IV, respectively. The results showed that both chronic and acute stress may exert an effect on atherosclerosis in subjects with impaired endothelial responses. The findings are consistent with the idea that risk factors are more harmful if the endothelium is not working properly. Chronic stress was found to be a risk if it has resulted in ineffective cardiac stress reactivity or delayed recovery. Men were shown to be at increased risk for atherosclerotic progression in early life, which suggests men’s decreased stress coping ability in relation to stressful psychosocial coronary risk factors. Autonomic imbalance may be the common mechanism of the stress influence on atherosclerosis development. The results of the present study contain background information for the identification the first stages of atherosclerosis, and they may be useful for preventive medicine programs for young adults and could help to improve cardiovascular health in Finland as well as in other countries.
Resumo:
In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.
Resumo:
The genus Actinomyces consists of a heterogeneous group of gram-positive, mainly facultatively anaerobic or microaerobic rods showing various degrees of branching. In the oral cavity, streptococci and Actinomyces form a fundamental component of the indigenous microbiota, being among initial colonizers in polymicrobial biofilms. The significance of the genus Actinomyces is based on the capability of species to adhere to surfaces such as on teeth and to co-aggregate with other bacteria. Identification of Actinomyces species has mainly been based on only a few biochemical characteristics, such as pigmentation and catalase production, or on the use of a single commercial kit. The limited identification of oral Actinomyces isolates to species level has hampered knowledge of their role both in health and disease. In recent years, Actinomyces and related organisms have attracted the attention of clinical microbiologists because of a growing awareness of their presence in clinical specimens and their association with disease. This series of studies aimed to amplify the identification methods for Actinomyces species. With the newly developed identification scheme, the age-related occurrence of Actinomyces in healthy mouths of infants and their distribution in failed dental implants was investigated. Adhesion of Actinomyces species to titanium surfaces processed in various ways was studied in vitro. The results of phenotypic identification methods indicated a relatively low applicability of commercially available test kits for reliable identification within the genus Actinomyces. However, in the study of conventional phenotypic methods, it was possible to develop an identification scheme that resulted in accurate differentiation of Actinomyces and closely related species, using various different test methods. Genotypic methods based on 16S rRNA sequence analysis of Actinomyces proved to be a useful method for genus level identification and further clarified the species level identification with phenotypic methods. The results of the study of infants showed that the isolation frequency of salivary Actinomyces species increased according to age: thirty-one percent of the infants at 2 months but 97% at 2 years of age were positive for Actinomyces. A. odontolyticus was the most prominent Actinomyces colonizer during the study period followed in frequency by A. naeslundii and A. viscosus. In the study of explanted dental implants, Actinomyces was the most prevalent bacterial genus, colonizing 94% of the fixtures. Also in the implants A. odontolyticus was revealed as the most common Actinomyces species. It was present in 84% of Actinomyces -positive fixtures followed in frequency by A. naeslundii, A. viscosus and A. israelii. In an in vitro study of titanium surfaces, different Actinomyces species showed variation regarding their adhesion to titanium. Surface roughness as well as albumin coating of titanium had significant effects on adhesion. The use of improved phenotypic and molecular diagnostic methods increased the accuracy of the identification of the Actinomyces to species level. This facilitated an investigation of their occurrence and distribution in oral specimens in both health and disease.
Resumo:
Matrix metalloproteinase (MMP) -8, collagenase-2, is a key mediator of irreversible tissue destruction in chronic periodontitis and detectable in gingival crevicular fluid (GCF). MMP-8 mostly originates from neutrophil leukocytes, the first line of defence cells which exist abundantly in GCF, especially in inflammation. MMP-8 is capable of degrading almost all extra-cellular matrix and basement membrane components and is especially efficient against type I collagen. Thus the expression of MMP-8 in GCF could be valuable in monitoring the activity of periodontitis and possibly offers a diagnostic means to predict progression of periodontitis. In this study the value of MMP-8 detection from GCF in monitoring of periodontal health and disease was evaluated with special reference to its ability to differentiate periodontal health and different disease states of the periodontium and to recognise the progression of periodontitis, i.e. active sites. For chair-side detection of MMP-8 from the GCF or peri-implant sulcus fluid (PISF) samples, a dip-stick test based on immunochromatography involving two monoclonal antibodies was developed. The immunoassay for the detection of MMP-8 from GCF was found to be more suitable for monitoring of periodontitis than detection of GCF elastase concentration or activity. Periodontally healthy subjects and individuals suffering of gingivitis or of periodontitis could be differentiated by means of GCF MMP-8 levels and dipstick testing when the positive threshold value of the MMP-8 chair-side test was set at 1000 µg/l. MMP-8 dipstick test results from periodontally healthy and from subjects with gingivitis were mainly negative while periodontitis patients sites with deep pockets ( 5 mm) and which were bleeding on probing were most often test positive. Periodontitis patients GCF MMP-8 levels decreased with hygiene phase periodontal treatment (scaling and root planing, SRP) and even reduced during the three month maintenance phase. A decrease in GCF MMP-8 levels could be monitored with the MMP-8 test. Agreement between the test stick and the quantitative assay was very good (κ = 0.81) and the test provided a baseline sensitivity of 0.83 and specificity of 0.96. During the 12-month longitudinal maintenance phase, periodontitis patients progressing sites (sites with an increase in attachment loss ≥ 2 mm during the maintenance phase) had elevated GCF MMP-8 levels compared with stable sites. General mean MMP-8 concentrations in smokers (S) sites were lower than in non-smokers (NS) sites but in progressing S and NS sites concentrations were at an equal level. Sites with exceptionally and repeatedly elevated MMP-8 concentrations during the maintenance phase were clustered in smoking patients with poor response to SRP (refractory patients). These sites especially were identified by the MMP-8 test. Subgingival plaque samples from periodontitis patients deep periodontal pockets were examined by polymerase chain reaction (PCR) to find out if periodontal lesions may serve as a niche for Chlamydia pneumoniae. Findings were compared with the clinical periodontal parameters and GCF MMP-8 levels to determine the correlation with periodontal status. Traces of C. pneumoniae were identified from one periodontitis patient s pooled subgingival plaque sample by means of PCR. After periodontal treatment (SRP) the sample was negative for C. pneumoniae. Clinical parameters or biomarkers (MMP-8) of the patient with the positive C. pneumoniae finding did not differ from other study patients. In this study it was concluded that MMP-8 concentrations in GCF of sites from periodontally healthy individuals, subjects with gingivitis or with periodontitis are at different levels. The cut-off value of the developed MMP-8 test is at an optimal level to differentiate between these conditions and can possibly be utilised in identification of individuals at the risk of the transition of gingivitis to periodontitis. In periodontitis patients, repeatedly elevated GCF MMP-8 concentrations may indicate sites at risk of progression of periodontitis as well as patients with poor response to conventional periodontal treatment (SRP). This can be monitored by MMP-8 testing. Despite the lower mean GCF MMP-8 concentrations in smokers, a fraction of smokers sites expressed very high MMP-8 concentrations together with enhanced periodontal activity and could be identified with MMP-8 specific chair-side test. Deep periodontal lesions may be niches for non-periodontopathogenic micro-organisms with systemic effects like C. pneumoniae and possibly play a role in the transmission from one subject to another.
Resumo:
Drug Analysis without Primary Reference Standards: Application of LC-TOFMS and LC-CLND to Biofluids and Seized Material Primary reference standards for new drugs, metabolites, designer drugs or rare substances may not be obtainable within a reasonable period of time or their availability may also be hindered by extensive administrative requirements. Standards are usually costly and may have a limited shelf life. Finally, many compounds are not available commercially and sometimes not at all. A new approach within forensic and clinical drug analysis involves substance identification based on accurate mass measurement by liquid chromatography coupled with time-of-flight mass spectrometry (LC-TOFMS) and quantification by LC coupled with chemiluminescence nitrogen detection (LC-CLND) possessing equimolar response to nitrogen. Formula-based identification relies on the fact that the accurate mass of an ion from a chemical compound corresponds to the elemental composition of that compound. Single-calibrant nitrogen based quantification is feasible with a nitrogen-specific detector since approximately 90% of drugs contain nitrogen. A method was developed for toxicological drug screening in 1 ml urine samples by LC-TOFMS. A large target database of exact monoisotopic masses was constructed, representing the elemental formulae of reference drugs and their metabolites. Identification was based on matching the sample component s measured parameters with those in the database, including accurate mass and retention time, if available. In addition, an algorithm for isotopic pattern match (SigmaFit) was applied. Differences in ion abundance in urine extracts did not affect the mass accuracy or the SigmaFit values. For routine screening practice, a mass tolerance of 10 ppm and a SigmaFit tolerance of 0.03 were established. Seized street drug samples were analysed instantly by LC-TOFMS and LC-CLND, using a dilute and shoot approach. In the quantitative analysis of amphetamine, heroin and cocaine findings, the mean relative difference between the results of LC-CLND and the reference methods was only 11%. In blood specimens, liquid-liquid extraction recoveries for basic lipophilic drugs were first established and the validity of the generic extraction recovery-corrected single-calibrant LC-CLND was then verified with proficiency test samples. The mean accuracy was 24% and 17% for plasma and whole blood samples, respectively, all results falling within the confidence range of the reference concentrations. Further, metabolic ratios for the opioid drug tramadol were determined in a pharmacogenetic study setting. Extraction recovery estimation, based on model compounds with similar physicochemical characteristics, produced clinically feasible results without reference standards.
Resumo:
Type 2 diabetes is an increasing, serious, and costly public health problem. The increase in the prevalence of the disease can mainly be attributed to changing lifestyles leading to physical inactivity, overweight, and obesity. These lifestyle-related risk factors offer also a possibility for preventive interventions. Until recently, proper evidence regarding the prevention of type 2 diabetes has been virtually missing. To be cost-effective, intensive interventions to prevent type 2 diabetes should be directed to people at an increased risk of the disease. The aim of this series of studies was to investigate whether type 2 diabetes can be prevented by lifestyle intervention in high-risk individuals, and to develop a practical method to identify individuals who are at high risk of type 2 diabetes and would benefit from such an intervention. To study the effect of lifestyle intervention on diabetes risk, we recruited 522 volunteer, middle-aged (aged 40 - 64 at baseline), overweight (body mass index > 25 kg/m2) men (n = 172) and women (n = 350) with impaired glucose tolerance to the Diabetes Prevention Study (DPS). The participants were randomly allocated either to the intensive lifestyle intervention group or the control group. The control group received general dietary and exercise advice at baseline, and had annual physician's examination. The participants in the intervention group received, in addition, individualised dietary counselling by a nutritionist. They were also offered circuit-type resistance training sessions and were advised to increase overall physical activity. The intervention goals were to reduce body weight (5% or more reduction from baseline weight), limit dietary fat (< 30% of total energy consumed) and saturated fat (< 10% of total energy consumed), and to increase dietary fibre intake (15 g / 1000 kcal or more) and physical activity (≥ 30 minutes/day). Diabetes status was assessed annually by a repeated 75 g oral glucose tolerance testing. First analysis on end-points was completed after a mean follow-up of 3.2 years, and the intervention phase was terminated after a mean duration of 3.9 years. After that, the study participants continued to visit the study clinics for the annual examinations, for a mean of 3 years. The intervention group showed significantly greater improvement in each intervention goal. After 1 and 3 years, mean weight reductions were 4.5 and 3.5 kg in the intervention group and 1.0 kg and 0.9 kg in the control group. Cardiovascular risk factors improved more in the intervention group. After a mean follow-up of 3.2 years, the risk of diabetes was reduced by 58% in the intervention group compared with the control group. The reduction in the incidence of diabetes was directly associated with achieved lifestyle goals. Furthermore, those who consumed moderate-fat, high-fibre diet achieved the largest weight reduction and, even after adjustment for weight reduction, the lowest diabetes risk during the intervention period. After discontinuation of the counselling, the differences in lifestyle variables between the groups still remained favourable for the intervention group. During the post-intervention follow-up period of 3 years, the risk of diabetes was still 36% lower among the former intervention group participants, compared with the former control group participants. To develop a simple screening tool to identify individuals who are at high risk of type 2 diabetes, follow-up data of two population-based cohorts of 35-64 year old men and women was used. The National FINRISK Study 1987 cohort (model development data) included 4435 subjects, with 182 new drug-treated cases of diabetes identified during ten years, and the FINRISK Study 1992 cohort (model validation data) included 4615 subjects, with 67 new cases of drug-treated diabetes during five years, ascertained using the Social Insurance Institution's Drug register. Baseline age, body mass index, waist circumference, history of antihypertensive drug treatment and high blood glucose, physical activity and daily consumption of fruits, berries or vegetables were selected into the risk score as categorical variables. In the 1987 cohort the optimal cut-off point of the risk score identified 78% of those who got diabetes during the follow-up (= sensitivity of the test) and 77% of those who remained free of diabetes (= specificity of the test). In the 1992 cohort the risk score performed equally well. The final Finnish Diabetes Risk Score (FINDRISC) form includes, in addition to the predictors of the model, a question about family history of diabetes and the age category of over 64 years. When applied to the DPS population, the baseline FINDRISC value was associated with diabetes risk among the control group participants only, indicating that the intensive lifestyle intervention given to the intervention group participants abolished the diabetes risk associated with baseline risk factors. In conclusion, the intensive lifestyle intervention produced long-term beneficial changes in diet, physical activity, body weight, and cardiovascular risk factors, and reduced diabetes risk. Furthermore, the effects of the intervention were sustained after the intervention was discontinued. The FINDRISC proved to be a simple, fast, inexpensive, non-invasive, and reliable tool to identify individuals at high risk of type 2 diabetes. The use of FINDRISC to identify high-risk subjects, followed by lifestyle intervention, provides a feasible scheme in preventing type 2 diabetes, which could be implemented in the primary health care system.
Resumo:
The neuronal ceroid lipofuscinoses (NCLs) are a group of mostly autosomal recessively inherited neurodegenerative disorders. The aim of this thesis was to characterize the molecular genetic bases of these, previously genetically undetermined, NCL forms. Congenital NCL is the most aggressive form of NCLs. Previously, a mutation in the cathepsin D (CTSD) gene was shown to cause congenital NCL in sheep. Based on the close resemblance of the phenotypes between congenital NCLs in sheep and human, CTSD was considered as a potential candidate gene in humans as well. When screened for mutations by sequencing, a homozygous nucleotide duplication creating a premature stop codon was identified in CTSD in one family with congenital NCL. While in vitro the overexpressed truncated mutant protein was stable although inactive, the absence of CTSD staining in brain tissue samples of patients indicated degradation of the mutant CTSD in vivo. A lack of CTSD staining was detected also in another, unrelated family with congenital NCL. These results imply that CTSD deficiency underlies congenital NCL. While initially Turkish vLINCL was considered a distinct genetic entity (CLN7), mutations in the CLN8 gene were later reported to account for the disease in a subset of Turkish patients with vLINCL. To further dissect the genetic basis of the disease, all known NCL genes were screened for homozygosity by haplotype analysis of microsatellite markers and/or sequenced in 13 mainly consanguineous, Turkish vLINCL families. Two novel, family-specific homozygous mutations were identified in the CLN6 gene. In the remaining families, all known NCL loci were excluded. To identify novel gene(s) underlying vLINCL, a genomewide single nucleotide polymorphism scan, homozygosity mapping, and positional candidate gene sequencing were performed in ten of these families. On chromosome 4q28.1-q28.2, a novel major facilitator superfamily domain containing 8 (MFSD8) gene with six family-specific homozygous mutations in vLINCL patients was identified. MFSD8 transcript was shown to be ubiquitously expressed with a complex pattern of alternative splicing. Our results suggest that MFSD8 is a novel lysosomal integral membrane protein which, as a member of the major facilitator superfamily, is predicted to function as a transporter. Identification of MFSD8 emphasizes the genetic heterogeneity of Turkish vLINCL. In families where no MFSD8 mutations were detected, additional NCL-causing genes remain to be identified. The identification of CTSD and MFSD8 increases the number of known human NCL-causing genes to eight, and is an important step towards the complete understanding of the genetic spectrum underlying NCLs. In addition, it is a starting point for dissecting the molecular mechanisms behind the associated NCLs and contributes to the challenging task of understanding the molecular pathology underlying the group of NCL disorders.
Resumo:
Meckel syndrome (MKS, MIM 249000) is an autosomal recessive developmental disorder causing death in utero or shortly after birth. The hallmarks of the disease are cystic kidney dysplasia and fibrotic changes of the liver, occipital encephalocele with or without hydrocephalus and polydactyly. Other anomalies frequently seen in the patients are incomplete development of the male genitalia, club feet and cleft lip or palate. The clinical picture has been well characterized in the literature while the molecular pathology underlying the disease has remained unclear until now. In this study we identified the first MKS gene by utilizing the disease haplotypes in Finnish MKS families linked to the MKS1 locus on chromosome 17q23 (MKS1) locus. Subsequently, the genetic heterogeneity of MKS was established in the Finnish families. Mutations in at least four different genes can cause MKS. These genes have been mapped to the chromosomes 17q23 (MKS1), 11q13 (MKS2), 8q22 (MKS3) and 9q33 (MKS4). Two of these genes have been identified so far: The MKS1 gene (this work) and the MKS3 gene. The identified MKS1 gene was initially a novel human gene which is conserved among species. We found three different MKS mutations, one of them being the Finnish founder mutation. The information available from MKS1 orthologs in other species convinced us that the MKS1 gene is required for normal ciliogenesis. Defects of the cilial system in other human diseases and model organisms actually cause phenotypic features similar to those seen in MKS patients. The MKS3 (TMEM67) gene encodes a transmembrane protein and the gene maps to the syntenic Wpk locus in the rat, which is a model with polycystic kidney disease, agenesis of the corpus callosum and hydrocephalus. The available information from these two genes suggest that MKS1 would encode a structural component of the centriole required for normal ciliary functions, and MKS3 would be a transmembrane component most likely required for normal ciliary sensory signaling. The MKS4 locus was localized to chromosme 9q32-33 in this study by using an inbred Finnish family with two affected and two healthy children. This fourth locus contains TRIM32 gene, which is associated to another well characterized human ciliopathy, Bardet Biedl syndrome (BBS). Future studies should identify the MKS4 gene on chromosome 9q and confirm if there are more than two genes causing MKS Finnish families. The research on critical signaling pathways in organogenesis have shown that both Wnt and Hedgehog pathways are dependent on functional cilia. The MKS gene products will serve as excellent model molecules for more detailed studies of the functional role of cilia in organogenesis in more detail.
Resumo:
Screening of wastewater effluents from municipal and industrial wastewater treatment plants with biotests showed that the treated wastewater effluents possess only minor acute toxic properties towards whole organisms (e.g. bacteria, algae, daphnia), if any. In vitro tests (sub-mitochondrial membranes and fish hepatocytes) were generally more susceptible to the effluents. Most of the effluents indicated the presence of hormonally active compounds, as the production of vitellogenin, an egg yolk precursor protein, was induced in fish hepatocytes exposed to wastewater. In addition, indications of slight genotoxic potential was found in one effluent concentrate with a recombinant bacteria test. Reverse electron transport (RET) of mitochondrial membranes was used as a model test to conduct effluent assessment followed by toxicant characterisations and identifications. Using a modified U.S. EPA Toxicity Identification Evaluation Phase I scheme and additional case-specific methods, the main compound in a pulp and paper mill effluent causing RET inhibition was characterised to be an organic, relatively hydrophilic high molecular weight (HMW) compound. The toxicant could be verified as HMW lignin by structural analyses using nuclear magnetic resonance. In the confirmation step commercial and in-house extracted lignin products were used. The possible toxicity related structures were characterised by statistical analysis of the chemical breakdown structures of laboratory-scale pulping and bleaching effluents and the toxicities of these effluents. Finally, the biological degradation of the identified toxicant and other wastewater constituents was evaluated using bioassays in combination with chemical analyses. Biological methods have not been used routinely in establishing effluent discharge limits in Finland. However, the biological effects observed in this study could not have been predicted using only routine physical and chemical effluent monitoring parameters. Therefore chemical parameters cannot be considered to be sufficient in controlling effluent discharges especially in case of unknown, possibly bioaccumulative, compounds that may be present in small concentrations and may cause chronic effects.
Resumo:
Yersinia enterocolitica and Yersinia pseudotuberculosis are among the major enteropathogenic bacteria causing infections in humans in many industrialized countries. In Finland, Y. pseudotuberculosis has caused 10 outbreaks among humans during 1997-2008. Some of these outbreaks have been very extensive involving over 400 cases; mainly children attending schools and day-care. Y. enterocolitica, on the contrary, has caused mainly a large number of sporadic human infections in Finland. Y. pseudotuberculosis is widespread in nature, causing infections in a variety of domestic and wild animals. Foodborne transmission of human infections has long been suspected, however, attempts to trace the pathogen have been unsuccessful before this study that epidemiologically linked Y. pseudotuberculosis to a specific food item. Furthermore, due to modern food distribution systems, foodborne outbreaks usually involve many geographically separate infection clusters difficult to identify as part of the same outbreak. Among pathogenic Y. enterocolitica, the global predominance of one genetically homogeneous type (bioserotype 4/O:3) is a challenge to the development of genetic typing methods discriminatory enough for epidemiological purposes, for example, for tracing back to the sources of infections. Furthermore, the diagnostics of Y. enterocolitica infections is hampered because clinical laboratories easily misidentify some other members of the Yersinia species (Y. enterocolitica–like species) as Y. enterocolitica. This results in misleading information on the prevalence and clinical significance of various Yersinia isolates. The aim of this study was to develop and optimize molecular typing methods to be used in epidemiological investigations of Y. enterocolitica and Y. pseudotuberculosis, particularly in active surveillance and outbreak investigations of Y. pseudotuberculosis isolates. The aim was also to develop a simplified set of phenotypic tests that could be used in routine diagnostic laboratories for the correct identification of Y. enterocolitica and Y. enterocolitica –like species. A PFGE method designed here for typing of Y. pseudotuberculosis was efficient in linking the geographically dispersed and apparently unrelated Y. pseudotuberculosis infections as parts of the same outbreak. It proved to be useful in active laboratory-based surveillance of Y. pseudotuberculosis outbreaks. Throughout the study period, information about the diversity of genotypes among outbreak and non-outbreak related strains of human origin was obtained. Also, to our knowledge, this was the first study to epidemiologically link a Y. pseudotuberculosis outbreak of human illnesses to a specific food item, iceberg lettuce. A novel epidemiological typing method based on the use of a repeated genomic region (YeO:3RS) as a probe was developed for the detection and differentiation between strains of Y. enterocolitica subspecies palearctica. This method was able to increase the discrimination in a set of 106 previously PFGE typed Finnish Y. enterocolitica bioserotype 4/O:3 strains among which two main PFGE genotypes had prevailed. The developed simplified method was a more reliable tool than the commercially available biochemical test kits for differentiation between Y. enterocolitica and Y. enterocolitica –like species. In Finland, the methods developed for Y. enterocolitica and Y. pseudotuberculosis have been used to improve the identification protocols and in subsequent outbreak investigations.
Resumo:
Standards have been placed to regulate the microbial and preservative contents to assure that foods are safe to the consumer. In a case of a food-related disease outbreak, it is crucial to be able to detect and identify quickly and accurately the cause of the disease. In addition, for every day control of food microbial and preservative contents, the detection methods must be easily performed for numerous food samples. In this present study, quicker alternative methods were studied for identification of bacteria by DNA fingerprinting. A flow cytometry method was developed as an alternative to pulsed-field gel electrophoresis, the golden method . DNA fragment sizing by an ultrasensitive flow cytometer was able to discriminate species and strains in a reproducible and comparable manner to pulsed-field gel electrophoresis. This new method was hundreds times faster and 200,000 times more sensitive. Additionally, another DNA fingerprinting identification method was developed based on single-enzyme amplified fragment length polymorphism (SE-AFLP). This method allowed the differentiation of genera, species, and strains of pathogenic bacteria of Bacilli, Staphylococci, Yersinia, and Escherichia coli. These fingerprinting patterns obtained by SE-AFLP were simpler and easier to analyze than those by the traditional amplified fragment length polymorphism by double enzyme digestion. Nisin (E234) is added as a preservative to different types of foods, especially dairy products, around the world. Various detection methods exist for nisin, but they lack in sensitivity, speed or specificity. In this present study, a sensitive nisin-induced green fluorescent protein (GFPuv) bioassay was developed using the Lactococcus lactis two-component signal system NisRK and the nisin-inducible nisA promoter. The bioassay was extremely sensitive with detection limit of 10 pg/ml in culture supernatant. In addition, it was compatible for quantification from various food matrices, such as milk, salad dressings, processed cheese, liquid eggs, and canned tomatoes. Wine has good antimicrobial properties due to its alcohol concentration, low pH, and organic content and therefore often assumed to be microbially safe to consume. Another aim of this thesis was to study the microbiota of wines returned by customers complaining of food-poisoning symptoms. By partial 16S rRNA gene sequence analysis, ribotyping, and boar spermatozoa motility assay, it was identified that one of the wines contained a Bacillus simplex BAC91, which produced a heat-stable substance toxic to the mitochondria of sperm cells. The antibacterial activity of wine was tested on the vegetative cells and spores of B. simplex BAC91, B. cereus type strain ATCC 14579 and cereulide-producing B. cereus F4810/72. Although the vegetative cells and spores of B. simplex BAC91 were sensitive to the antimicrobial effects of wine, the spores of B. cereus strains ATCC 14579 and F4810/72 stayed viable for at least 4 months. According to these results, Bacillus spp., more specifically spores, can be a possible risk to the wine consumer.