21 resultados para CATALYZED COUPLING REACTIONS
Resumo:
Dimeric phenolic compounds lignans and dilignols form in the so-called oxidative coupling reaction of phenols. Enzymes such as peroxidases and lac-cases catalyze the reaction using hydrogen peroxide or oxygen respectively as oxidant generating phenoxy radicals which couple together according to certain rules. In this thesis, the effects of the structures of starting materials mono-lignols and the effects of reaction conditions such as pH and solvent system on this coupling mechanism and on its regio- and stereoselectivity have been studied. After the primary coupling of two phenoxy radicals a very reactive quinone me-thide intermediate is formed. This intermediate reacts quickly with a suitable nucleophile which can be, for example, an intramolecular hydroxyl group or another nucleophile such as water, methanol, or a phenolic compound in the reaction system. This reaction is catalyzed by acids. After the nucleophilic addi-tion to the quinone methide, other hydrolytic reactions, rearrangements, and elimination reactions occur leading finally to stable dimeric structures called lignans or dilignols. Similar reactions occur also in the so-called lignification process when monolignol (or dilignol) reacts with the growing lignin polymer. New kinds of structures have been observed in this thesis. The dimeric com-pounds with so-called spirodienone structure have been observed to form both in the dehydrodimerization of methyl sinapate and in the beta-1-type cross-coupling reaction of two different monolignols. This beta-1-type dilignol with a spirodienone structure was the first synthetized and published dilignol model compound, and at present, it has been observed to exist as a fundamental construction unit in lignins. The enantioselectivity of the oxidative coupling reaction was also studied for obtaining enantiopure lignans and dilignols. A rather good enantioselectivity was obtained in the oxidative coupling reaction of two monolignols with chiral auxiliary substituents using peroxidase/H2O2 as an oxidation system. This observation was published as one of the first enantioselective oxidative coupling reaction of phenols. Pure enantiomers of lignans were also obtained by using chiral cryogenic chromatography as a chiral resolution technique. This technique was shown to be an alternative route to prepare enantiopure lignans or lignin model compounds in a preparative scale.
Resumo:
Tässä kirjallisuuskatsauksessa perehdyttiin ensisijaisesti puuvartisten- ja ruohokasvien soluseinien fenyylipropanoidien ja ferulahappojen biosynteesiin ja kytkeytymisreaktioihin. Fenyylipropanoidireitti alkaa fenyylialaniinista ja johtaa monien prekursoreiden kuten lignaanien, flavonoidien, salisyylihappojen ja ligniiniprekursoreiden syntymiseen. Tutkielmassa keskityttiin ligniiniprekursoreiden muodostumiseen ja erityisesti sen biosynteesireitin välituotteen, ferulahapon hapetettuihin kytkeytymisreaktioihin kasvien soluseinillä. Fenyylipropanoiditutkimuksen lähtökohtana on jo vuosia ollut selvittää biosynteesireittejä ja menetelmiä, joiden avulla ligniini saadaan kasvin soluseinältä liukenemaan ja hiilihydraatti otettua talteen. Eräs tapa tunnistaa näitä hajoamistapahtumia on tutkia fenyylipropanoidien kytkentöjen muodostumista. Tässä pro gradu -tutkielmassa fenyylipropanoidireitin välituotteiden entsyymien säätelyä tarkasteltiin luonnonvaraisissa ja geneettisesti muunnelluissa kasveissa. Bieosynteesireitti selkeytyi paljon. Lisäksi siirtogeenisillä kasveilla havaittiin kokonaan uusia kytkentöjä ja rakenteita. Eräillä geeniyhdistelmillä voitiin lisätä tuntuvasti hiilihydraattimäärää samalla kun ligniinin kokonaismäärä väheni. Näin arveltiin voitavan kasvattaa biomassan määrää puukasveilla. Ferulahapot dehydrogenoituvat entsymaattisesti hapettavissa olosuhteissa fenoksiradikaaleiksi, jotka reagoivat edelleen muodostaen toisen radikaalimonomeerin tai -polymeerin kanssa kytkentöjä. Soluseinä tuottaa radikaalireaktioissa tarvitsemansa hapettimet ja entsyymit, vetyperoksidin ja peroksidaasin itse. Ferulahapon monomeerit ja dimeerit muodostavat esterisidoksia soluseinän hemiselluloosan kanssa. Näin syntyneet ferulaattidimeerit ja -trimeerit muodostivat ristikytkentöjä hiilihydraattien ja ligniinin välille sekä yhden tai useamman polysakkaridiketjun välille. Ferulahappojen katsottiin olevan lignifioitumisen aloituskohtia soluseinillä ja yhdistävän kaksi suurta polymeerista verkkorakennetta toisiinsa. Myös soluseinän hiilihydraattien koostumuksen havaittiin vaikuttavan muodostuvien kytkentöjen rakenteeseen. Lopuksi tarkasteltiin vielä ferulahapon antioksidatiivisia ominaisuuksia. Todettiin ligniinin ja ferulahapon määrän korreloivan soluseinän peroksidaasi- ja vetyperoksidimäärän kanssa. Kaveissa monet taudinaiheuttajat, vioittuneet kasvin osat sekä UV-säteily lisäsivät peroksidaasien tuotantoa ja edelleen ferulahappojen määrää. Fenoksiradikaalina ferulahappo kykeni eliminoimaan vetyperoksidin haitallisten happiradikaalien vaikutuksia pelkistämällä ne hapettuen itse radikaalisessa kytkeytymisreaktiossa. Tämä johti mielenkiintoisiin tulevaisuuden näkymiin ferulahaposta funktionaalisena elintarvikkeena, lääkeaineena sekä kosmeettisena valmisteena.
Resumo:
Terminal oxidases are the final proteins of the respiratory chain in eukaryotes and some bacteria. They catalyze most of the biological oxygen consumption on Earth done by aerobic organisms. During the catalytic reaction terminal oxidases reduce dioxygen to water and use the energy released in this process to maintain the electrochemical proton gradient by functioning as a redox-driven proton pump. This membrane gradient of protons is extremely important for cells as it is used for many cellular processes, such as transportation of substrates and ATP synthesis. Even though the structures of several terminal oxidases are known, they are not sufficient in themselves to explain the molecular mechanism of proton pumping. In this work we have applied a complex approach using a variety of different techniques to address the properties and the mechanism of proton translocation by the terminal oxidases. The combination of direct measurements of pH changes during catalytic turnover, time-resolved potentiometric electrometry and optical spectroscopy, made it possible to obtain valuable information about various aspects of oxidase functioning. We compared oxygen binding properties of terminal oxidases from the distinct heme-copper (CcO) and cytochrome bd families and found that cytochrome bd has a high affinity for oxygen, which is 3 orders of magnitude higher than that of CcO. Interestingly, the difference between CcO and cytochrome bd is not only in higher affinity of the latter to oxygen, but also in the way that each of these enzymes traps oxygen during catalysis. CcO traps oxygen kinetically - the molecule of bound dioxygen is rapidly reduced before it can dissociate. Alternatively, cytochrome bd employs an alternative mechanism of oxygen trapping - part of the redox energy is invested into tight oxygen binding, and the price paid for this is the lack of proton pumping. A single cycle of oxygen reduction to water is characterized by translocation of four protons across the membrane. Our results make it possible to assign the pumping steps to discrete transitions of the catalytic cycle and indicate that during in vivo turnover of the oxidase these four protons are transferred, one at a time, during the P→F, F→OH, Oh→Eh, and Eh→R transitions. At the same time, each individual proton translocation step in the catalytic cycle is not just a single reaction catalyzed by CcO, but rather a complicated sequence of interdependent electron and proton transfers. We assume that each single proton translocation cycle of CcO is assured by internal proton transfer from the conserved Glu-278 to an as yet unidentified pump site above the hemes. Delivery of a proton to the pump site serves as a driving reaction that forces the proton translocation cycle to continue.
Resumo:
The antioxidant activity of natural plant materials rich in phenolic compounds is being widely investigated for protection of food products sensitive to oxidative reactions. In this thesis plant materials rich in phenolic compounds were studied as possible antioxidants to prevent protein and lipid oxidation reactions in different food matrixes such as pork meat patties and corn oil-in water emulsions. Loss of anthocyanins was also measured during oxidation in corn oil-in-water emulsions. In addition, the impact of plant phenolics on amino acid level was studied using tryptophan as a model compound to elucidate their role in preventing the formation of tryptophan oxidation products. A high-performance liquid chromatography (HPLC) method with ultraviolet and fluorescence detection (UV-FL) was developed that enabled fast investigation of formation of tryptophan derived oxidation products. Byproducts of oilseed processes such as rapeseed (Brassica rapa L.), camelina (Camelina sativa) and soy meal (Glycine max L.) as well as Scots pine bark (Pinus sylvestris) and several reference compounds were shown to act as antioxidants toward both protein and lipid oxidation in cooked pork meat patties. In meat, the antioxidant activity of camelina, rapeseed and soy meal were more pronounced when used in combination with a commercial rosemary extract (Rosmarinus officinalis). Berry phenolics such as black currant (Ribes nigrum) anthocyanins and raspberry (Rubus idaeus) ellagitannins showed potent antioxidant activity in corn oil-in-water emulsions toward lipid oxidation with and without β-lactoglobulin. The antioxidant effect was more pronounced in the presence of β-lactoglobulin. The berry phenolics also inhibited the oxidation of tryptophan and cysteine side chains of β-lactoglobulin. The results show that the amino acid side chains were oxidized prior the propagation of lipid oxidation, thereby inhibiting fatty acid scission. In addition, the concentration and color of black currant anthocyanins decreased during the oxidation. Oxidation of tryptophan was investigated in two different oxidation models with hydrogen peroxide (H2O2) and hexanal/FeCl2. Oxidation of tryptophan in both models resulted in oxidation products such as 3a-hydroxypyrroloindole-2-carboxylic acid, dioxindolylalanine, 5-hydroxy-tryptophan, kynurenine, N-formylkynurenine and β-oxindolylalanine. However, formation of tryptamine was only observed in tryptophan oxidized in the presence of H2O2. Pine bark phenolics, black currant anthocyanins, camelina meal phenolics as well as cranberry proanthocyanidins (Vaccinium oxycoccus) provided the best antioxidant effect toward tryptophan and its oxidation products when oxidized with H2O2. The tryptophan modifications formed upon hexanal/FeCl2 treatment were efficiently inhibited by camelina meal followed by rapeseed and soy meal. In contrast, phenolics from raspberry, black currant, and rowanberry (Sorbus aucuparia) acted as weak prooxidants. This thesis contributes to elucidating the effects of natural phenolic compounds as potential antioxidants in order to control and prevent protein and lipid oxidation reactions. Understanding the relationship between phenolic compounds and proteins as well as lipids could lead to the development of new, effective, and multifunctional antioxidant strategies that could be used in food, cosmetic and pharmaceutical applications.
Resumo:
In this thesis, the kinetics of several alkyl, halogenated alkyl, and alkenyl free radical reactions with NO2, O2, Cl2, and HCl reactants were studied over a wide temperature range in time resolved conditions. Laser photolysis photoionisation mass spectrometer coupled to a flow reactor was the experimental method employed and this thesis present the first measurements performed with the experimental system constructed. During this thesis a great amount of work was devoted to the designing, building, testing, and improving the experimental apparatus. Carbon-centred free radicals were generated by the pulsed 193 or 248 nm photolysis of suitable precursors along the tubular reactor. The kinetics was studied under pseudo-first-order conditions using either He or N2 buffer gas. The temperature and pressure ranges employed were between 190 and 500 K, and 0.5 45 torr, respectively. The possible role of heterogeneous wall reactions was investigated employing reactor tubes with different sizes, i.e. to significantly vary the surface to volume ratio. In this thesis, significant new contributions to the kinetics of carbon-centred free radical reactions with nitrogen dioxide were obtained. Altogether eight substituted alkyl (CH2Cl, CHCl2, CCl3, CH2I, CH2Br, CHBr2, CHBrCl, and CHBrCH3) and two alkenyl (C2H3, C3H3) free radical reactions with NO2 were investigated as a function of temperature. The bimolecular rate coefficients of all these reactions were observed to possess negative temperature dependencies, while pressure dependencies were not noticed for any of these reactions. Halogen substitution was observed to moderately reduce the reactivity of substituted alkyl radicals in the reaction with NO2, while the resonance stabilisation of the alkenyl radical lowers its reactivity with respect to NO2 only slightly. Two reactions relevant to atmospheric chemistry, CH2Br + O2 and CH2I + O2, were also investigated. It was noticed that while CH2Br + O2 reaction shows pronounced pressure dependence, characteristic of peroxy radical formation, no such dependence was observed for the CH2I + O2 reaction. Observed primary products of the CH2I + O2 reaction were the I-atom and the IO radical. Kinetics of CH3 + HCl, CD3 + HCl, CH3 + DCl, and CD3 + DCl reactions were also studied. While all these reactions possess positive activation energies, in contrast to the other systems investigated in this thesis, the CH3 + HCl and CD3 + HCl reactions show a non-linear temperature dependency on the Arrhenius plot. The reactivity of substituted methyl radicals toward NO2 was observed to increase with decreasing electron affinity of the radical. The same trend was observed for the reactions of substituted methyl radicals with Cl2. It is proposed that interactions of frontier orbitals are responsible to these observations and Frontier Orbital Theory could be used to explain the observed reactivity trends of these highly exothermic reactions having reactant-like transition states.
Resumo:
Cells of every living organism on our planet − bacterium, plant or animal − are organized in such a way that despite differences in structure and function they utilize the same metabolic energy represented by electrochemical proton gradient across a membrane. This gradient of protons is generated by the series of membrane bound multisubunit proteins, Complex I, II, III and IV, organized in so-called respiratory or electron transport chain. In the eukaryotic cell it locates in the inner mitochondrial membrane while in the bacterial cell it locates in the cytoplasmic membrane. The function of the respiratory chain is to accept electrons from NADH and ubiquinol and transfer them to oxygen resulting in the formation of water. The free energy released upon these redox reactions is converted by respiratory enzymes into an electrochemical proton gradient, which is used for synthesis of ATP as well as for many other energy dependent processes. This thesis is focused on studies of the first member of the respiratory chain − NADH:ubiquinone oxidoreductase or Complex I. This enzyme has a boot-shape structure with hydrophilic and hydrophobic domains, the former of which has all redox groups of the protein, the flavin and eight to nine iron-sulfur clusters. Complex I serves as a proton pump coupling transfer of two electrons from NADH to ubiquinone to the translocation of four protons across the membrane. So far the mechanism of energy transduction by Complex I is unknown. In the present study we applied a set of different methods to study the electron and proton transfer reactions in Complex I from Escherichia coli. The main achievement was the experiment that showed that the electron transfer through the hydrophilic domain of Complex I is unlikely to be coupled to proton transfer directly or to conformational changes in the protein. In this work for the first time properties of all redox centers of Complex I were characterized in the intact purified bacterial enzyme. We also probed the role of several conserved amino acid residues in the electron transfer of Complex I. Finally, we found that highly conserved amino acid residues in several membrane subunits form a common pattern with a very prominent feature – the presence of a few lysines within the membrane. Based on the experimental data, we suggested a tentative principle which may govern the redox-coupled proton pumping in Complex I.
Resumo:
Benthic-pelagic coupling describes processes that operate across and between the seafloor and open-water ecosystems. In soft-sediment communities, bioturbation by sediment-dwelling and epibenthic organisms may strongly shape habitat characteristics and influence processes, e.g. biogeochemical cycling, which supplies bioavailable nutrients to pelagic primary producers. In addition, benthic fauna may mediate benthic-pelagic coupling by affecting the survival and hatching of zooplankton dormant eggs in the sediment. In the shallow waters and seasonally fluctuating environment of the Baltic Sea, emergence from the seafloor essentially contributes to the dynamics of zooplankton pelagic populations. In this thesis, I examine how benthic organisms with different functional traits affect the link between the benthic and pelagic systems in the northern Baltic Sea. By means of experimental laboratory studies, the effects of sediment-dwelling (Monoporeia affinis, Macoma balthica and Marenzelleria spp.) and nectobenthic (Mysis spp.) taxa on the survival and hatching of zooplankton benthic eggs and on benthic nutrient fluxes and sediment structure were investigated. In the predation studies, the nectobenthic mysids Mysis spp. preyed upon benthic eggs of the cladoceran Bosmina longispina maritima (syn. B. coregoni maritima), both in pelagic and benthic environments. Of the sediment-dwelling species, the amphipod M. affinis and the bivalve M. balthica reduced the number of cladoceran eggs in the sediment, whereas the polychaetes Marenzelleria spp. had no effects on cladoceran eggs. Both M. balthica and M. affinis also increased the mortality rates of benthic eggs of copepods and rotifers. It was estimated that zooplankton eggs provide an additional carbon source for food-limited benthic communities. The results indicate that predation pressure on zooplankton benthic eggs may be strong, but varies widely depending on the season and the functional characteristics of the macrofauna. Macoma balthica buried cladoceran eggs and a fluorescent tracer from the sediment surface to a depth of 3 4 cm, indicating efficient sediment mixing. In contrast, the other taxa had fewer effects on particle distributions. In addition to organic matter mineralization, particle mixing is crucial to the success of benthic recruitment of zooplankton, since only eggs close to the sediment surface may hatch. Macoma balthica and M. affinis altered the patterns of zooplankton emergence from the sediment. In general, the highest emergence rates were observed in the absence of macroscopic fauna, and M. balthica exerted a stronger suppressive effect than M. affinis. Moreover, copepods were less severely affected than cladocerans, while only one species (Temora longicornis) clearly benefited from the presence of the macrofauna. These differences probably result from species-specific differences in the resistance of eggs to disturbances. The results show that benthic fauna may considerably alter the patterns of zooplankton emergence from the seafloor, thereby shaping zooplankton pelagic populations. The semi-motile M. balthica and Marenzelleria spp. increased the fluxes of phosphate and ammonium from the sediment to the water, whereas the motile M. affinis and Mysis mixta had a contrasting effect. In the eutrophied Baltic Sea, efficient internal cycling of bioavailable nutrients forms a strong feedback inhibiting the recovery of the ecosystem. Based on the results, a change in species dominance from the two motile taxa, susceptible to oxygen deficiency, to the more tolerant semi-motile taxa provides additional feedback, strengthening internal nutrient cycling and accelerating eutrophication, with deteriorating near-bottom oxygen conditions and changes in the benthic communities. In shallow-water ecosystems, benthic nutrient regeneration plays a key role in determining the overall productivity of the ecosystem. In addition, the results of this study show that the communities in the benthos may essentially contribute to the structure of those in the plankton.