22 resultados para Behavioral theories
Resumo:
This study examines both theoretically an empirically how well the theories of Norman Holland, David Bleich, Wolfgang Iser and Stanley Fish can explain readers' interpretations of literary texts. The theoretical analysis concentrates on their views on language from the point of view of Wittgenstein's Philosophical Investigations. This analysis shows that many of the assumptions related to language in these theories are problematic. The empirical data show that readers often form very similar interpretations. Thus the study challenges the common assumption that literary interpretations tend to be idiosyncratic. The empirical data consists of freely worded written answers to questions on three short stories. The interpretations were made by 27 Finnish university students. Some of the questions addressed issues that were discussed in large parts of the texts, some referred to issues that were mentioned only in passing or implied. The short stories were "The Witch à la Mode" by D. H. Lawrence, "Rain in the Heart" by Peter Taylor and "The Hitchhiking Game" by Milan Kundera. According to Fish, readers create both the formal features of a text and their interpretation of it according to an interpretive strategy. People who agree form an interpretive community. However, a typical answer usually contains ideas repeated by several readers as well as observations not mentioned by anyone else. Therefore it is very difficult to determine which readers belong to the same interpretive community. Moreover, readers with opposing opinions often seem to pay attention to the same textual features and even acknowledge the possibility of an opposing interpretation; therefore they do not seem to create the formal features of the text in different ways. Iser suggests that an interpretation emerges from the interaction between the text and the reader when the reader determines the implications of the text and in this way fills the "gaps" in the text. Iser believes that the text guides the reader, but as he also believes that meaning is on a level beyond words, he cannot explain how the text directs the reader. The similarity in the interpretations and the fact that the agreement is strongest when related to issues that are discussed broadly in the text do, however, support his assumption that readers are guided by the text. In Bleich's view, all interpretations have personal motives and each person has an idiosyncratic language system. The situation where a person learns a word determines the most important meaning it has for that person. In order to uncover the personal etymologies of words, Bleich asks his readers to associate freely on the basis of a text and note down all the personal memories and feelings that the reading experience evokes. Bleich's theory of the idiosyncratic language system seems to rely on a misconceived notion of the role that ostensive definitions have in language use. The readers' responses show that spontaneous associations to personal life seem to colour the readers' interpretations, but such instances are rather rare. According to Holland, an interpretation reflects the reader's identity theme. Language use is regulated by shared rules, but everyone follows the rules in his or her own way. Words mean different things to different people. The problem with this view is that if there is any basis for language use, it seems to be the shared way of following linguistic rules. Wittgenstein suggests that our understanding of words is related to the shared ways of using words and our understanding of human behaviour. This view seems to give better grounds for understanding similarity and differences in literary interpretations than the theories of Holland, Bleich, Fish and Iser.
Resumo:
This study concentrates on the contested concept of pastiche in literary studies. It offers the first detailed examination of the history of the concept from its origins in the seventeenth century to the present, showing how pastiche emerged as a critical concept in interaction with the emerging conception of authorial originality and the copyright laws protecting it. One of the key results of this investigation is the contextualisation of the postmodern debate on pastiche. Even though postmodern critics often emphasise the radical novelty of pastiche, they in fact resuscitate older positions and arguments without necessarily reflecting on their historical conditions. This historical background is then used to analyse the distinction between the primarily French conception of pastiche as the imitation of style and the postmodern notion of it as the compilation of different elements. The latter s vagueness and inclusiveness detracts from its value as a critical concept. The study thus concentrates on the notion of stylistic pastiche, challenging the widespread prejudice that it is merely an indication of lack of talent. Because it is multiply based on repetition, pastiche is in fact a highly ambiguous or double-edged practice that calls into question the distinction between repetition and original, thereby undermining the received notion of individual unique authorship as a fundamental aesthetic value. Pastiche does not, however, constitute a radical upheaval of the basic assumptions on which the present institution of literature relies, since, in order to mark its difference, pastiche always refers to a source outside itself against which its difference is measured. Finally, the theoretical analysis of pastiche is applied to literary works. The pastiches written by Marcel Proust demonstrate how it can become an integral part of a writer s poetics: imitation of style is shown to provide Proust with a way of exploring the role of style as a connecting point between inner vision and reality. The pastiches of the Sherlock Holmes stories by Michael Dibdin, Nicholas Meyer and the duo Adrian Conan Doyle and John Dickson Carr illustrate the functions of pastiche within a genre detective fiction that is itself fundamentally repetitive. A.S. Byatt s Possession and D.M. Thomas s Charlotte use Victorian pastiches to investigate the conditions of literary creation in the age of postmodern suspicion of creativity and individuality. The study thus argues that the concept of pastiche has valuable insights to offer to literary criticism and theory, and that literary pastiches, though often dismissed in reviews and criticism, are a particularly interesting object of study precisely because of their characteristic ambiguity.
Resumo:
Pitch discrimination is a fundamental property of the human auditory system. Our understanding of pitch-discrimination mechanisms is important from both theoretical and clinical perspectives. The discrimination of spectrally complex sounds is crucial in the processing of music and speech. Current methods of cognitive neuroscience can track the brain processes underlying sound processing either with precise temporal (EEG and MEG) or spatial resolution (PET and fMRI). A combination of different techniques is therefore required in contemporary auditory research. One of the problems in comparing the EEG/MEG and fMRI methods, however, is the fMRI acoustic noise. In the present thesis, EEG and MEG in combination with behavioral techniques were used, first, to define the ERP correlates of automatic pitch discrimination across a wide frequency range in adults and neonates and, second, they were used to determine the effect of recorded acoustic fMRI noise on those adult ERP and ERF correlates during passive and active pitch discrimination. Pure tones and complex 3-harmonic sounds served as stimuli in the oddball and matching-to-sample paradigms. The results suggest that pitch discrimination in adults, as reflected by MMN latency, is most accurate in the 1000-2000 Hz frequency range, and that pitch discrimination is facilitated further by adding harmonics to the fundamental frequency. Newborn infants are able to discriminate a 20% frequency change in the 250-4000 Hz frequency range, whereas the discrimination of a 5% frequency change was unconfirmed. Furthermore, the effect of the fMRI gradient noise on the automatic processing of pitch change was more prominent for tones with frequencies exceeding 500 Hz, overlapping with the spectral maximum of the noise. When the fundamental frequency of the tones was lower than the spectral maximum of the noise, fMRI noise had no effect on MMN and P3a, whereas the noise delayed and suppressed N1 and exogenous N2. Noise also suppressed the N1 amplitude in a matching-to-sample working memory task. However, the task-related difference observed in the N1 component, suggesting a functional dissociation between the processing of spatial and non-spatial auditory information, was partially preserved in the noise condition. Noise hampered feature coding mechanisms more than it hampered the mechanisms of change detection, involuntary attention, and the segregation of the spatial and non-spatial domains of working-memory. The data presented in the thesis can be used to develop clinical ERP-based frequency-discrimination protocols and combined EEG and fMRI experimental paradigms.
Resumo:
The earliest stages of human cortical visual processing can be conceived as extraction of local stimulus features. However, more complex visual functions, such as object recognition, require integration of multiple features. Recently, neural processes underlying feature integration in the visual system have been under intensive study. A specialized mid-level stage preceding the object recognition stage has been proposed to account for the processing of contours, surfaces and shapes as well as configuration. This thesis consists of four experimental, psychophysical studies on human visual feature integration. In two studies, classification image a recently developed psychophysical reverse correlation method was used. In this method visual noise is added to near-threshold stimuli. By investigating the relationship between random features in the noise and observer s perceptual decision in each trial, it is possible to estimate what features of the stimuli are critical for the task. The method allows visualizing the critical features that are used in a psychophysical task directly as a spatial correlation map, yielding an effective "behavioral receptive field". Visual context is known to modulate the perception of stimulus features. Some of these interactions are quite complex, and it is not known whether they reflect early or late stages of perceptual processing. The first study investigated the mechanisms of collinear facilitation, where nearby collinear Gabor flankers increase the detectability of a central Gabor. The behavioral receptive field of the mechanism mediating the detection of the central Gabor stimulus was measured by the classification image method. The results show that collinear flankers increase the extent of the behavioral receptive field for the central Gabor, in the direction of the flankers. The increased sensitivity at the ends of the receptive field suggests a low-level explanation for the facilitation. The second study investigated how visual features are integrated into percepts of surface brightness. A novel variant of the classification image method with brightness matching task was used. Many theories assume that perceived brightness is based on the analysis of luminance border features. Here, for the first time this assumption was directly tested. The classification images show that the perceived brightness of both an illusory Craik-O Brien-Cornsweet stimulus and a real uniform step stimulus depends solely on the border. Moreover, the spatial tuning of the features remains almost constant when the stimulus size is changed, suggesting that brightness perception is based on the output of a single spatial frequency channel. The third and fourth studies investigated global form integration in random-dot Glass patterns. In these patterns, a global form can be immediately perceived, if even a small proportion of random dots are paired to dipoles according to a geometrical rule. In the third study the discrimination of orientation structure in highly coherent concentric and Cartesian (straight) Glass patterns was measured. The results showed that the global form was more efficiently discriminated in concentric patterns. The fourth study investigated how form detectability depends on the global regularity of the Glass pattern. The local structure was either Cartesian or curved. It was shown that randomizing the local orientation deteriorated the performance only with the curved pattern. The results give support for the idea that curved and Cartesian patterns are processed in at least partially separate neural systems.
Resumo:
Adverse health behaviors as well as obesity are key risk factors for chronic diseases. Working conditions also contribute to health outcomes. It is possible that the effects of psychosocially strenuous working conditions and other work-related factors on health are, to some extent, explained by adverse behaviors. Previous studies about the associations between several working conditions and behavioral outcomes are, however, inconclusive. Moreover, the results are derived mostly from male populations, one national setting only, and with limited information about working conditions and behavioral risk factors. Thus, with an interest in employee health, this study was set to focus on behavioral risk factors among middle-aged employees. More specifically, the main aim was to shed light on the associations of various working conditions with health behaviors, weight gain, obesity, and symptoms of angina pectoris. In addition to national focus, international comparisons were included to test the associations across countries thereby aiming to produce a more comprehensive picture. Furthermore, a special emphasis was on gaining new evidence in these areas among women. The data derived from the Helsinki Health Study, and from collaborative partners at the Whitehall II Study, University College London, UK, and the Toyama University, Japan. In Helsinki, the postal questionnaires were mailed in 2000-2002 to employees of the City of Helsinki, aged 40 60 years (n=8960). The questionnaire data covered e.g., socio-economic indicators and working conditions such as Karasek s job demands and job control, work fatigue, working overtime, work-home interface, and social support. The outcome measures consisted of smoking, drinking, physical activity, food habits, weight gain, obesity, and symptoms of angina pectoris. The international cohorts included comparable data. Logistic regression analysis was used. The models were adjusted for potential confounders such as age, education, occupational class, and marital status subject to specific aims. The results showed that working conditions were mostly unassociated with health behaviors, albeit some associations were found. Low job strain was associated with healthy food habits and non-smoking among women in Helsinki. Work fatigue, in turn, was related to drinking among men and physical inactivity among women. Work fatigue and working overtime were associated with weight gain in Helsinki among both women and men. Finally, work fatigue, low job control, working overtime, and physically strenuous work were associated with symptoms of angina pectoris among women in Helsinki. Cross-country comparisons confirmed mostly non-existent associations. High job strain was associated with physical inactivity and smoking, and passive work with physical inactivity and less drinking. Working overtime, in turn, related to non-smoking and obesity. All these associations were, however, inconsistent between cohorts and genders. In conclusion, the associations of the studied working conditions with the behavioral risk factors lacked general patters, and were, overall, weak considering the prevalence of psychosocially strenuous work and overtime hours. Thus, based on this study, the health effects of working conditions are likely to be mediated by adverse behaviors only to a minor extent. The associations of work fatigue and working overtime with weight gain and symptoms of angina pectoris are, however, of potential importance to the subsequent health and work ability of employees.
Resumo:
Our present-day understanding of fundamental constituents of matter and their interactions is based on the Standard Model of particle physics, which relies on quantum gauge field theories. On the other hand, the large scale dynamical behaviour of spacetime is understood via the general theory of relativity of Einstein. The merging of these two complementary aspects of nature, quantum and gravity, is one of the greatest goals of modern fundamental physics, the achievement of which would help us understand the short-distance structure of spacetime, thus shedding light on the events in the singular states of general relativity, such as black holes and the Big Bang, where our current models of nature break down. The formulation of quantum field theories in noncommutative spacetime is an attempt to realize the idea of nonlocality at short distances, which our present understanding of these different aspects of Nature suggests, and consequently to find testable hints of the underlying quantum behaviour of spacetime. The formulation of noncommutative theories encounters various unprecedented problems, which derive from their peculiar inherent nonlocality. Arguably the most serious of these is the so-called UV/IR mixing, which makes the derivation of observable predictions especially hard by causing new tedious divergencies, to which our previous well-developed renormalization methods for quantum field theories do not apply. In the thesis I review the basic mathematical concepts of noncommutative spacetime, different formulations of quantum field theories in the context, and the theoretical understanding of UV/IR mixing. In particular, I put forward new results to be published, which show that also the theory of quantum electrodynamics in noncommutative spacetime defined via Seiberg-Witten map suffers from UV/IR mixing. Finally, I review some of the most promising ways to overcome the problem. The final solution remains a challenge for the future.
Resumo:
One of the most tangled fields of research is the field of defining and modeling affective concepts, i. e. concepts regarding emotions and feelings. The subject can be approached from many disciplines. The main problem is lack of generally approved definitions. However, e.g. linguists have recently started to check the consistency of their theories with the help of computer simulations. Definitions of affective concepts are needed for performing similar simulations in behavioral sciences. In this thesis, preliminary computational definitions of affects for a simple utility-maximizing agent are given. The definitions have been produced by synthetizing ideas from theories from several fields of research. The class of affects is defined as a superclass of emotions and feelings. Affect is defined as a process, in which a change in an agent's expected utility causes a bodily change. If the process is currently under the attention of the agent (i.e. the agent is conscious of it), the process is a feeling. If it is not, but can in principle be taken into attention (i.e. it is preconscious), the process is an emotion. Thus, affects do not presuppose consciousness, but emotions and affects do. Affects directed at unexpected materialized (i.e. past) events are delight and fright. Delight is the consequence of an unexpected positive event and fright is the consequence of an unexpected negative event. Affects directed at expected materialized (i.e. past) events are happiness (expected positive event materialized), disappointment (expected positive event did not materialize), sadness (expected negative event materialized) and relief (expected negative event did not materialize). Affects directed at expected unrealized (i.e. future) events are fear and hope. Some other affects can be defined as directed towards originators of the events. The affect classification has also been implemented as a computer program, the purpose of which is to ensure the coherence of the definitions and also to illustrate the capabilities of the model. The exact content of bodily changes associated with specific affects is not considered relevant from the point of view of the logical structure of affective phenomena. The utility function need also not be defined, since the target of examination is only its dynamics.
Resumo:
Democratic Legitimacy and the Politics of Rights is a research in normative political theory, based on comparative analysis of contemporary democratic theories, classified roughly as conventional liberal, deliberative democratic and radical democratic. Its focus is on the conceptual relationship between alternative sources of democratic legitimacy: democratic inclusion and liberal rights. The relationship between rights and democracy is studied through the following questions: are rights to be seen as external constraints to democracy or as objects of democratic decision making processes? Are individual rights threatened by public participation in politics; do constitutionally protected rights limit the inclusiveness of democratic processes? Are liberal values such as individuality, autonomy and liberty; and democratic values such as equality, inclusion and popular sovereignty mutually conflictual or supportive? Analyzing feminist critique of liberal discourse, the dissertation also raises the question about Enlightenment ideals in current political debates: are the universal norms of liberal democracy inherently dependent on the rationalist grand narratives of modernity and incompatible with the ideal of diversity? Part I of the thesis introduces the sources of democratic legitimacy as presented in the alternative democratic models. Part II analyses how the relationship between rights and democracy is theorized in them. Part III contains arguments by feminists and radical democrats against the tenets of universalist liberal democratic models and responds to that critique by partly endorsing, partly rejecting it. The central argument promoted in the thesis is that while the deconstruction of modern rationalism indicates that rights are political constructions as opposed to externally given moral constraints to politics, this insight does not delegitimize the politics of universal rights as an inherent part of democratic institutions. The research indicates that democracy and universal individual rights are mutually interdependent rather than oppositional; and that democracy is more dependent on an unconditional protection of universal individual rights when it is conceived as inclusive, participatory and plural; as opposed to robust majoritarian rule. The central concepts are: liberalism, democracy, legitimacy, deliberation, inclusion, equality, diversity, conflict, public sphere, rights, individualism, universalism and contextuality. The authors discussed are e.g. John Rawls, Jürgen Habermas, Seyla Benhabib, Iris Young, Chantal Mouffe and Stephen Holmes. The research focuses on contemporary political theory, but the more classical work of John S. Mill, Benjamin Constant, Isaiah Berlin and Hannah Arendt is also included.
Resumo:
Einstein's general relativity is a classical theory of gravitation: it is a postulate on the coupling between the four-dimensional, continuos spacetime and the matter fields in the universe, and it yields their dynamical evolution. It is believed that general relativity must be replaced by a quantum theory of gravity at least at extremely high energies of the early universe and at regions of strong curvature of spacetime, cf. black holes. Various attempts to quantize gravity, including conceptually new models such as string theory, have suggested that modification to general relativity might show up even at lower energy scales. On the other hand, also the late time acceleration of the expansion of the universe, known as the dark energy problem, might originate from new gravitational physics. Thus, although there has been no direct experimental evidence contradicting general relativity so far - on the contrary, it has passed a variety of observational tests - it is a question worth asking, why should the effective theory of gravity be of the exact form of general relativity? If general relativity is modified, how do the predictions of the theory change? Furthermore, how far can we go with the changes before we are face with contradictions with the experiments? Along with the changes, could there be new phenomena, which we could measure to find hints of the form of the quantum theory of gravity? This thesis is on a class of modified gravity theories called f(R) models, and in particular on the effects of changing the theory of gravity on stellar solutions. It is discussed how experimental constraints from the measurements in the Solar System restrict the form of f(R) theories. Moreover, it is shown that models, which do not differ from general relativity at the weak field scale of the Solar System, can produce very different predictions for dense stars like neutron stars. Due to the nature of f(R) models, the role of independent connection of the spacetime is emphasized throughout the thesis.
Resumo:
Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.
Local numerical modelling of magnetoconvection and turbulence - implications for mean-field theories
Resumo:
During the last decades mean-field models, in which large-scale magnetic fields and differential rotation arise due to the interaction of rotation and small-scale turbulence, have been enormously successful in reproducing many of the observed features of the Sun. In the meantime, new observational techniques, most prominently helioseismology, have yielded invaluable information about the interior of the Sun. This new information, however, imposes strict conditions on mean-field models. Moreover, most of the present mean-field models depend on knowledge of the small-scale turbulent effects that give rise to the large-scale phenomena. In many mean-field models these effects are prescribed in ad hoc fashion due to the lack of this knowledge. With large enough computers it would be possible to solve the MHD equations numerically under stellar conditions. However, the problem is too large by several orders of magnitude for the present day and any foreseeable computers. In our view, a combination of mean-field modelling and local 3D calculations is a more fruitful approach. The large-scale structures are well described by global mean-field models, provided that the small-scale turbulent effects are adequately parameterized. The latter can be achieved by performing local calculations which allow a much higher spatial resolution than what can be achieved in direct global calculations. In the present dissertation three aspects of mean-field theories and models of stars are studied. Firstly, the basic assumptions of different mean-field theories are tested with calculations of isotropic turbulence and hydrodynamic, as well as magnetohydrodynamic, convection. Secondly, even if the mean-field theory is unable to give the required transport coefficients from first principles, it is in some cases possible to compute these coefficients from 3D numerical models in a parameter range that can be considered to describe the main physical effects in an adequately realistic manner. In the present study, the Reynolds stresses and turbulent heat transport, responsible for the generation of differential rotation, were determined along the mixing length relations describing convection in stellar structure models. Furthermore, the alpha-effect and magnetic pumping due to turbulent convection in the rapid rotation regime were studied. The third area of the present study is to apply the local results in mean-field models, which task we start to undertake by applying the results concerning the alpha-effect and turbulent pumping in mean-field models describing the solar dynamo.