12 resultados para costly taxation
em eResearch Archive - Queensland Department of Agriculture
Resumo:
Genetic mark–recapture requires efficient methods of uniquely identifying individuals. 'Shadows' (individuals with the same genotype at the selected loci) become more likely with increasing sample size, and bias harvest rate estimates. Finding loci is costly, but better loci reduce analysis costs and improve power. Optimal microsatellite panels minimize shadows, but panel design is a complex optimization process. locuseater and shadowboxer permit power and cost analysis of this process and automate some aspects, by simulating the entire experiment from panel design to harvest rate estimation.
Resumo:
This paper is the first of a series that investigates whether new cropping systems with permanent raised beds (PRBs) or Flat land could be successfully used to increase farmers' incomes from rainfed crops in Lombok in Eastern Indonesia. This paper discusses the rice phase of the cropping system. Low grain yields of dry-seeded rice (Oryza sativa) grown on Flat land on Vertisols in the rainfed region of southern Lombok, Eastern Indonesia, are probably mainly due to (a) erratic rainfall (870-1220 mm/yr), with water often limiting at sensitive growth stages, (b) consistently high temperatures (average maximum - 31 C), and (c) low solar radiation. Farmers are therefore poor, and labour is hard and costly, as all operations are manual. Two replicated field experiments were run at Wakan (annual rainfall = 868 mm) and Kawo (1215 mm) for 3 years (2001/2002 to 2003/2004) on Vertisols in southern Lombok. Dry-seeded rice was grown in 4 treatments with or without manual tillage on (a) PRBs, 1.2 m wide, 200 mm high, separated by furrows 300 mm wide, 200 mill deep, with no rice sown in the well-graded furrows, and (b) well-graded Flat land. Excess surface water was harvested from each treatment and used for irrigation after the vegetative stage of the rice. All operations were manual. There were no differences between treatments in grain yield of rice (mean grain yield = 681 g/m(2)) which could be partly explained by total number of tillers/hill and mean panicle length, but not number of productive tillers/hill, plant height or weight of 1000 grains. When the data from both treatments on PRBs and from both treatments on Flat land, each year at each site were analysed, there were also no differences in grain yield of rice (g/m(2)). When rainfall in the wet season up to harvest was over 1000 mm (Year 2; Wakan, Kawo), or plants were water-stressed during crop establishment (Year 1; Wakan) or during grain-fill (Year 3: Kawo), there were significant differences in grain yield (g/1.5 m(2)) between treatments; generally the grain yield (g/1.5 m(2)) on PRBs with or without tillage was less than that on Flat land with or without tillage. However, when the data from both treatments on PRBs and from both treatments on Flat land, each year at each site, were analysed, the greater grain yield of dry-seeded rice on Flat land (mean yield 1 092 g/1.5 m(2)) than that on PRBs (mean 815 g/1.5 m(2)) was mainly because there were 25% more plants on Flat land. Overall when the data in the 2 outer rows and the 2 inner rows on PRBs were each combined, there was a higher number of productive tillers in the combined outer rows (mean 20.7 tillers/hill) compared with that in the combined inner rows on each PRB (mean 18.2 tillers/hill). However, there were no differences in grain yield between combined rows (mean 142 g/m row). Hence with a gap of 500 mm (the distance between the outer rows of plants on adjacent raised beds), plants did not compensate in grain yield for missing plants in furrows. This suggests that rice (a) also sown in furrows, or (b) sown in 7 rows with narrower row-spacing, or (c) sown in 6 rows with slightly wider row-spacing, and narrower gap between outer rows on adjacent beds, may further increase grain yield (g/1.5 m(2)) in this system of PRBs. The growth and the grain yield (y in g/m(2)) of rainfed rice (with rainfall on-site the only source of water for irrigation) depended mainly on the rainfall (x in mm) in the wet season up to harvest (due either to site or year) with y = 1. 1x -308; r(2) = 0.54; p < 0.005. However, 280 mm (i.e. 32%) of the rainfall was not directly used to produce grain (i.e. when y = 0 g/m(2)). Manual tillage did not affect growth and grain yield of rice (g/m(2); g/1.5 m(2)), either on PRB or on Flat land.
Resumo:
The Australian dugong (Dugong dugon) and Florida manatee (Trichechus manatus latirostris) are threatened species of aquatic mammals in the order Sirenia. Sirenian conservation and management actions would benefit from a more complete understanding of genetic diversity and population structure. Generally, species-specific microsatellite markers are employed in conservation genetic studies; however, robust markers can be difficult and costly to isolate. To increase the number of available markers, dugong and manatee microsatellite primers were evaluated for cross-species amplification. Furthermore, one manatee and four dugong novel primers are reported. After polymerase chain reaction optimization, 23 (92%) manatee primers successfully amplified dugong DNA, of which 11 (48%) were polymorphic. Of the 32 dugong primers tested, 27 (84%) yielded product in the manatee, of which 17 (63%) were polymorphic. Dugong and manatee primers were compared and the most informative markers were selected to create robust and informative marker-panels for each species. These cross-species microsatellite marker-panels can be employed to assess other sirenian populations and can provide beneficial information for the protection and management of these unique mammals.
Resumo:
The project will provide enough data for a reliable and robust NIRs. It will more fully develop the in vitro method to enable less costly assessment of grains in the future. It will also provide a reliable assessment for DE which is the most expensive component of pig feed.
Resumo:
The availability and quality of irrigation water has become an issue limiting productivity in many Australian vegetable regions. Production is also under competitive pressure from supply chain forces. Producers look to new technologies, including changing irrigation infrastructure, exploring new water sources, and more complex irrigation management, to survive these stresses. Often there is little objective information investigating which improvements could improve outcomes for vegetable producers, and external communities (e.g. meeting NRM targets). This has led to investment in inappropriate technologies, and costly repetition of errors, as business independently discover the worth of technologies by personal experience. In our project, we investigated technology improvements for vegetable irrigation. Through engagement with industry and other researchers, we identified technologies most applicable to growers, particularly those that addressed priority issues. We developed analytical tools for ‘what if’ scenario testing of technologies. We conducted nine detailed experiments in the Lockyer Valley and Riverina vegetable growing districts, as well as case studies on grower properties in southern Queensland. We investigated root zone monitoring tools (FullStop™ wetting front detectors and Soil Solution Extraction Tubes - SSET), drip system layout, fertigation equipment, and altering planting arrangements. Our project team developed and validated models for broccoli, sweet corn, green beans and lettuce, and spreadsheets for evaluating economic risks associated with new technologies. We presented project outcomes at over 100 extension events, including irrigation showcases, conferences, field days, farm walks and workshops. The FullStops™ were excellent for monitoring root zone conditions (EC, nitrate levels), and managing irrigation with poor quality water. They were easier to interpret than the SSET. The SSET were simpler to install, but required wet soil to be reliable. SSET were an option for monitoring deeper soil zones, unsuitable for FullStop™ installations. Because these root zone tools require expertise, and are labour intensive, we recommend they be used to address specific problems, or as a periodic auditing strategy, not for routine monitoring. In our research, we routinely found high residual N in horticultural soils, with subsequently little crop yield response to additional nitrogen fertiliser. With improved irrigation efficiency (and less leaching), it may be timely to re-examine nitrogen budgets and recommendations for vegetable crops. Where the drip irrigation tube was located close to the crop row (i.e. within 5-8 cm), management of irrigation was easier. It improved nitrogen uptake, water use efficiency, and reduced the risk of poor crop performance through moisture stress, particularly in the early crop establishment phases. Close proximity of the drip tube to the crop row gives the producer more options for managing salty water, and more flexibility in taking risks with forecast rain. In many vegetable crops, proximate drip systems may not be cost-effective. The next best alternative is to push crop rows closer to the drip tube (leading to an asymmetric row structure). The vegetable crop models are good at predicting crop phenology (development stages, time to harvest), input use (water, fertiliser), environmental impacts (nutrient, salt movement) and total yields. The two immediate applications for the models are understanding/predicting/manipulating harvest dates and nitrogen movements in vegetable cropping systems. From the economic tools, the major influences on accumulated profit are price and yield. In doing ‘what if’ analyses, it is very important to be as accurate as possible in ascertaining what the assumed yield and price ranges are. In most vegetable production systems, lowering the required inputs (e.g. irrigation requirement, fertiliser requirement) is unlikely to have a major influence on accumulated profit. However, if a resource is constraining (e.g. available irrigation water), it is usually most profitable to maximise return per unit of that resource.
Resumo:
Development of new agricultural industries in northern Australia is often perceived as a solution to changes in water availability that have occurred within southern Australia as a result of changes to government policy in response to and exacerbated by climate change. This report examines the likely private, social and community costs and benefits associated with the establishment of a cotton industry in the Burdekin. The research undertaken covers three spatial scales by modelling the response of cotton and to climate change at the crop and farm scale and linking this to regional scale modelling of the economy. Modelling crop growth as either a standalone crop or as part of a farm enterprise provides the clearest picture of how yields and water use will be affected under climate change. The alternative to this is to undertake very costly trials in environmental chambers. For this reason it is critical that funding for model development especially for crops being crop in novel environments be seen as a high priority for climate change and adaptation studies. Crop level simulations not only provide information on how the crop responds to climate change, they also illustrate that that these responses are the result of complex interactions and cannot necessarily be derived from the climate information alone. These simulations showed that climate change would lead to decreased cotton yields in 2030 and 2050 without the affect of CO2 fertilisation. Without CO2 fertilisation, yields would be decreased by 3.2% and 17.8%. Including CO2 fertilisation increased yields initially by 5.9%, but these were reduced by 3.6% in 2050. This still represents a major offset and at least ameliorates the impact of climate change on yield. To cope with the decreased in-crop rainfall (4.5% by 2030 and 15.8% in 2050) and an initial increase in evapotranspiration of 2% in 2030 and
Resumo:
The Rhipicephalus micro plus genome is large and complex in structure, making it difficult to assemble a genome sequence and costly to resource the required bioinformatics. In light of this, a consortium of international collaborators was formed to pool resources to begin sequencing this genome. We have acquired and assembled genomic DNA into contigs that represent over 1.8 Gigabase pairs of DNA from gene-enriched regions of the R. micro plus genome. We also have several datasets containing transcript sequences from a number of gene expression experiments conducted by the consortium. A web-based resource was developed to enable the scientific community to access our datasets and conduct analysis through a web-based bioinformatics environment called YABI. The collective bioinformatics resource is termed CattleTickBase. Our consortium has acquired genomic and transcriptomic sequence data at approximately 0.9X coverage of the gene-coding regions of the R. microplus genome. The YABI tool will facilitate access and manipulation of cattle tick genome sequence data as the genome sequencing of R. microplus proceeds. During this process the CattleTickBase resource will continue to be updated. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc.
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.
Resumo:
Standards for farm animal welfare are variously managed at a national level by government-led regulatory control, by consumer-led welfare economics and co-regulated control in a partnership between industry and government. In the latter case the control of research to support animal welfare standards by the relevant industry body may lead to a conflict of interest on the part of researchers, who are dependent on industry for continued research funding. We examine this dilemma by reviewing two case studies of research published under an Australian co-regulated control system. Evidence of unsupported conclusions that are favourable to industry is provided, suggesting that researchers do experience a conflict of interest that may influence the integrity of the research. Alternative models for the management of research are discussed, including the establishment of an independent research management body for animal welfare because of its public good status and the use of public money derived from taxation, with representation from government, industry, consumers, and advocacy groups.
Resumo:
With livestock manures being increasingly sought as alternatives to costly synthetic fertilisers, it is imperative that we understand and manage their associated greenhouse gas (GHG) emissions. Here we provide the first dedicated assessment into how the GHG emitting potential of various manures responds to the different stages of the manure management continuum (e.g., from feed pen surface vs stockpiled). The research is important from the perspective of manure application to agricultural soils. Manures studied included: manure from beef feedpen surfaces and stockpiles; poultry broiler litter (8-week batch); fresh and composted egg layer litter; and fresh and composted piggery litter. Gases assessed were methane (CH4) and nitrous oxide (N2O), the two principal agricultural GHGs. We employed proven protocols to determine the manures’ ultimate CH4 producing potential. We also devised a novel incubation experiment to elucidate their N2O emitting potential; a measure for which no established methods exist. We found lower CH4 potentials in manures from later stages in their management sequence compared with earlier stages, but only by a factor of 0.65×. Moreover, for the beef manures this decrease was not significant (P < 0.05). Nitrous oxide emission potential was significantly positively (P < 0.05) correlated with C/N ratios yet showed no obvious relationship with manure management stage. Indeed, N2O emissions from the composted egg manure were considerably (13×) and significantly (P < 0.05) higher than that of the fresh egg manure. Our study demonstrates that manures from all stages of the manure management continuum potentially entail significant GHG risk when applied to arable landscapes. Efforts to harness manure resources need to account for this.
Resumo:
Coccidiosis is a costly enteric disease of chickens caused by protozoan parasites of the genus Eimeria. Disease diagnosis and management is complicated since there are multiple Eimeria species infecting chickens and mixed species infections are common. Current control measures are only partially effective and this, combined with concerns over vaccine efficacy and increasing drug resistance, demonstrates a need for improved coccidiosis diagnosis and control. Before improvements can be made, it is important to understand the species commonly infecting poultry flocks in both backyard and commercial enterprises. The aim of this project was to conduct a survey and assessment of poultry Eimeria across Australia using genetic markers, and create a collection of isolates for each Eimeria species. A total of 260 samples (faecal or caecal) was obtained, and survey results showed that Eimeria taxa were present in 98% of commercial and 81% of backyard flocks. The distribution of each Eimeria species was widespread across Australia, with representatives of all species being found in every state and territory, and the Eimeria species predominating in commercial flocks differed from those in backyard flocks. Three operational taxonomic units also occurred frequently in commercial flocks highlighting the need to understand the impact of these uncharacterised species on poultry production. As Eimeria infections were also frequent in backyard flocks, there is a potential for backyard flocks to act as reservoirs for disease, especially as the industry moves towards free range production systems. This Eimeria collection will be an important genetic resource which is the crucial first step in the development of more sophisticated diagnostic tools and the development of new live vaccines which ultimately will provide savings to the industry in terms of more efficient coccidiosis management.
Resumo:
Two trials were done in this project. One was a continuation of work started under a previous GRDC/SRDC-funded activity, 'Strategies to improve the integration of legumes into cane based farming systems'. This trial aimed to assess the impact of trash and tillage management options and nematicide application on nematodes and crop performance. Methods and results are contained in the following publication: Halpin NV, Stirling GR, Rehbein WE, Quinn B, Jakins A, Ginns SP. The impact of trash and tillage management options and nematicide application on crop performance and plant-parasitic nematode populations in a sugarcane/peanut farming system. Proc. Aust. Soc. Sugar Cane Technol. 37, 192-203. Nematicide application in the plant crop significantly reduced total numbers of plant parasitic nematodes (PPN) but there was no impact on yield. Application of nematicide to the ratoon crop significantly reduced sugar yield. The study confirmed other work demonstrating that implementation of strategies like reduced tillage reduced populations of total PPN, suggesting that the soil was more suppressive to PPN in those treatments. The second trial, a variety trial, demonstrated the limited value of nematicide application in sugarcane farming systems. This study has highlighted that growers shouldn’t view nematicides as a ‘cure all’ for paddocks that have historically had high PPN numbers. Nematicides have high mammalian toxicity, have the potential to contaminate ground water (Kookana et al. 1995) and are costly. The cost of nematicide used in R1 was approx. $320 - $350/ha, adding $3.50/t of cane in a 100 t/ha crop. Also, our study demonstrated that a single nematicide treatment at the application rate registered for sugarcane is not very effective in reducing populations of nematode pests. There appears to be some levels of resistance to nematodes within the current suite of varieties available to the southern canelands. For example the soil in plots that were growing Q183 had 560% more root knot nematodes / 200mL soil compared to plots that grew Q245. The authors see great value in investment into a nematode screening program that could rate varieties into groups of susceptibility to both major sugarcane nematode pests. Such a rating could then be built into a decision support ‘tree’ or tool to better enable producers to select varieties on a paddock by paddock basis.