4 resultados para NoSQL MongoDB

em Universidade Complutense de Madrid


Relevância:

20.00% 20.00%

Publicador:

Resumo:

En este proyecto se ha desarrollado una aplicación Web cuya finalidad es ofrecer al usuario datos provenientes del análisis de texto de las noticias que se encuentran en periódicos online. La aplicación permite al usuario realizar búsquedas personalizadas sobre temáticas específicas y configurar algunos tipos de análisis sobre la información recuperada. Entre los análisis que son llevados a cabo destaca el análisis del sentimiento. Para ello se ofrece la posibilidad de que el usuario utilice sus propios diccionarios de pares palabra-valor, utilizados para realizar este tipo de análisis. Para la codificación de la herramienta, se ha utilizado el lenguaje de programación Python y la framework web Django. El almacenamiento de la información de la aplicación se ha realizado sobre una base de datos NoSQL de tipo MongoDB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Durante el desarrollo del proyecto he aprendido sobre Big Data, Android y MongoDB mientras que ayudaba a desarrollar un sistema para la predicción de las crisis del trastorno bipolar mediante el análisis masivo de información de diversas fuentes. En concreto hice una parte teórica sobre bases de datos NoSQL, Streaming Spark y Redes Neuronales y después diseñé y configuré una base de datos MongoDB para el proyecto del trastorno bipolar. También aprendí sobre Android y diseñé y desarrollé una aplicación de móvil en Android para recoger datos para usarlos como entrada en el sistema de predicción de crisis. Una vez terminado el desarrollo de la aplicación también llevé a cabo una evaluación con usuarios.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

En este Trabajo de Fin de Máster se desarrollará un sistema de detección de fraude en pagos con tarjeta de crédito en tiempo real utilizando tecnologías de procesamiento distribuido. Concretamente se considerarán dos tecnologías: TIBCO, un conjunto de herramientas comerciales diseñadas para el procesamiento de eventos complejos, y Apache Spark, un sistema abierto para el procesamiento de datos en tiempo real. Además de implementar el sistema utilizando las dos tecnologías propuestas, un objetivo, otro objetivo de este Trabajo de Fin de Máster consiste en analizar y comparar estos dos sistemas implementados usados para procesamiento en tiempo real. Para la detección de fraude en pagos con tarjeta de crédito se aplicarán técnicas de aprendizaje máquina, concretamente del campo de anomaly/outlier detection. Como fuentes de datos que alimenten los sistemas, haremos uso de tecnologías de colas de mensajes como TIBCO EMS y Kafka. Los datos generados son enviados a estas colas para que los respectivos sistemas puedan procesarlos y aplicar el algoritmo de aprendizaje máquina, determinando si una nueva instancia es fraude o no. Ambos sistemas hacen uso de una base de datos MongoDB para almacenar los datos generados de forma pseudoaleatoria por los generadores de mensajes, correspondientes a movimientos de tarjetas de crédito. Estos movimientos posteriormente serán usados como conjunto de entrenamiento para el algoritmo de aprendizaje máquina.