6 resultados para Mote hardware
em Universidade Complutense de Madrid
Resumo:
Hoy día vivimos en la sociedad de la tecnología, en la que la mayoría de las cosas cuentan con uno o varios procesadores y es necesario realizar cómputos para hacer más agradable la vida del ser humano. Esta necesidad nos ha brindado la posibilidad de asistir en la historia a un acontecimiento sin precedentes, en el que la cantidad de transistores era duplicada cada dos años, y con ello, mejorada la velocidad de cómputo (Moore, 1965). Tal acontecimiento nos ha llevado a la situación actual, en la que encontramos placas con la capacidad de los computadores de hace años, consumiendo muchísima menos energía y ocupando muchísimo menos espacio, aunque tales prestaciones quedan un poco escasas para lo que se requiere hoy día. De ahí surge la idea de comunicar placas que se complementan en aspectos en las que ambas se ven limitadas. En nuestro proyecto desarrollaremos una interfaz s oftware/hardware para facilitar la comunicación entre dos placas con distintas prestaciones, a saber, una Raspberry Pi modelo A 2012 y una FPGA Spartan XSA3S1000 con placa extendida XStend Board V3.0. Dicha comunicación se basará en el envío y recepción de bits en serie, y será la Raspberry Pi quien marque las fases de la comunicación. El proyecto se divide en dos partes: La primera parte consiste en el desarrollo de un módulo para el kernel de Linux, que se encarga de gestionar las entradas y salidas de datos de la Raspberry Pi cuando se realizan las pertinentes llamadas de write o read. Mediante el control de los GPIO y la gestión de las distintas señales, se realiza la primera fase de la comunicación. La segunda parte consiste en el desarrollo de un diseño en VHDL para la FPGA, mediante el cual se pueda gestionar la recepción, cómputo y posterior envío de bits, de forma que la Raspberry Pi pueda disponer de los datos una vez hayan sido calculados. Ambas partes han sido desarrolladas bajo licencias libres (GPL) para que estén disponibles a cualquier persona interesada en el desarrollo y que deseen su reutilización.
Resumo:
PMCTrack es una herramienta de código abierto para Linux que permite monitorizar el rendimiento de las aplicaciones haciendo uso de los contadores hardware del procesador. Esta herramienta soporta la captura de métricas como el número de instrucciones por ciclo o la tasa de fallos de cache. El objetivo de este proyecto es portar PMCTrack al sistema operativo Android sobre plataformas que integran procesadores de ARM. Esto conlleva la realización de las siguientes tareas: (1) modificación de la variante del kernel Linux propia de Android para incluir las extensiones requeridas por el módulo del kernel de PMCTrack, (2) adaptación de las herramientas de modo usuario de PMCTrack, y (3) desarrollo de una aplicación Android que permita visualizar en tiempo real las medidas de los contadores recabadas para las distintas aplicaciones que están siendo monitorizadas. Para poner a prueba la adaptación de la herramienta PMCTrack al sistema operativo Android y mostrar la utilidad de nuestras aportaciones, se han llevado a cabo diversos casos de estudio empleando la placa de desarrollo Odroid XU4.
Resumo:
This letter presents an FPGA implementation of a fault-tolerant Hopfield NeuralNetwork (HNN). The robustness of this circuit against Single Event Upsets (SEUs) and Single Event Transients (SETs) has been evaluated. Results show the fault tolerance of the proposed design, compared to a previous non fault- tolerant implementation and a solution based on triple modular redundancy (TMR) of a standard HNN design.
Resumo:
New generation embedded systems demand high performance, efficiency and flexibility. Reconfigurable hardware can provide all these features. However the costly reconfiguration process and the lack of management support have prevented a broader use of these resources. To solve these issues we have developed a scheduler that deals with task-graphs at run-time, steering its execution in the reconfigurable resources while carrying out both prefetch and replacement techniques that cooperate to hide most of the reconfiguration delays. In our scheduling environment task-graphs are analyzed at design-time to extract useful information. This information is used at run-time to obtain near-optimal schedules, escaping from local-optimum decisions, while only carrying out simple computations. Moreover, we have developed a hardware implementation of the scheduler that applies all the optimization techniques while introducing a delay of only a few clock cycles. In the experiments our scheduler clearly outperforms conventional run-time schedulers based on As-Soon-As-Possible techniques. In addition, our replacement policy, specially designed for reconfigurable systems, achieves almost optimal results both regarding reuse and performance.
Resumo:
Reconfigurable platforms are a promising technology that offers an interesting trade-off between flexibility and performance, which many recent embedded system applications demand, especially in fields such as multimedia processing. These applications typically involve multiple ad-hoc tasks for hardware acceleration, which are usually represented using formalisms such as Data Flow Diagrams (DFDs), Data Flow Graphs (DFGs), Control and Data Flow Graphs (CDFGs) or Petri Nets. However, none of these models is able to capture at the same time the pipeline behavior between tasks (that therefore can coexist in order to minimize the application execution time), their communication patterns, and their data dependencies. This paper proves that the knowledge of all this information can be effectively exploited to reduce the resource requirements and the timing performance of modern reconfigurable systems, where a set of hardware accelerators is used to support the computation. For this purpose, this paper proposes a novel task representation model, named Temporal Constrained Data Flow Diagram (TCDFD), which includes all this information. This paper also presents a mapping-scheduling algorithm that is able to take advantage of the new TCDFD model. It aims at minimizing the dynamic reconfiguration overhead while meeting the communication requirements among the tasks. Experimental results show that the presented approach achieves up to 75% of resources saving and up to 89% of reconfiguration overhead reduction with respect to other state-of-the-art techniques for reconfigurable platforms.
Resumo:
Reconfigurable hardware can be used to build a multitasking system where tasks are assigned to HW resources at run-time according to the requirements of the running applications. These tasks are frequently represented as direct acyclic graphs and their execution is typically controlled by an embedded processor that schedules the graph execution. In order to improve the efficiency of the system, the scheduler can apply prefetch and reuse techniques that can greatly reduce the reconfiguration latencies. For an embedded processor all these computations represent a heavy computational load that can significantly reduce the system performance. To overcome this problem we have implemented a HW scheduler using reconfigurable resources. In addition we have implemented both prefetch and replacement techniques that obtain as good results as previous complex SW approaches, while demanding just a few clock cycles to carry out the computations. We consider that the HW cost of the system (in our experiments 3% of a Virtex-II PRO xc2vp30 FPGA) is affordable taking into account the great efficiency of the techniques applied to hide the reconfiguration latency and the negligible run-time penalty introduced by the scheduler computations.