51 resultados para ultra-high strenth steel

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The materials considered in our analysis were ZrB2 ceramic matrix composites. Effect of two different additives (graphite and AlN) on thermal shock stability for the materials was measured by water quench test. It showed that it may provide more stable thermal shock properties with additives of graphite. It was explained by different thermal properties and crack resistance of the two materials in detail. Surface oxidation was one of main reasons for strength degradation of ceramic with additives of graphite after quenched in water, and surface crack was one of main reasons for strength degradation of ceramic with additives of AlN after quenched in water. It was presented that it was a potential method for improving thermal shock stability of ZrB2 ceramic matrix composites by introducing proper quantities of graphite.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep centers of high electron mobility transistor (HEMT) and pseudomorphic-HEMT (P-HEMT) functional materials of ultra-high-speed microstructures grown by MBE are investigated using deep level transient spectroscopy (DLTS) technique. DLTS spectra demonstrate that midgap states, having larger concentrations and capture cross sections, are measured in n-AlGaAs layers of HEMT and P-HEMT structures. These states may correlate strongly with oxygen content of n-AlGaAs layer. At the same time, one can observe that the movement of DX center is related to silicon impurity that is induced by the strain in AlGaAs layer of the mismatched AlGaAs/InGaAs/GaAs system of P-HEMT structure. The experimental results also show that DLTS technique may be a tool of optimization design of the practical devices.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we have reported a very simple strategy (combined sonication with sol-gel techniques) for synthesizing well-defined silica-coated carbon nanotube (CNT) coaxial nanocable without prior CNT functionalization. After functionalization with NH2 group, the CNT/silica coaxial nanocable has been employed as a three-dimensional support for loading ultra-high-density metal or hybrid nanoparticles (NPs) such as gold NPs, Au/Pt hybrid NPs, Pt hollow NPs, and Au/Ag core/shell NPs. Most importantly, it is found that the ultra-high-density Au/Pt NPs supported on coaxial nanocables (UASCN) could be used as enhanced materials for constructing electrochemical devices with high performance. Four model probe molecules (O-2, CH3OH, H2O2, and NH2NH2) have been investigated on UASCN-modified glassy carbon electrode (GCE). It was observed that the present UASCN exhibited high electrocatalytic activity toward diverse molecules and was a promising electrocatalyst for constructing electrochemical devices with high performance. For instance, the detection limit for H2O2 with a signal-to-noise ratio of 3 was found to be 0.3 mu M, which was lower than certain enzyme-based biosensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra high molar mass polyethylene (UHPE) powder as polymerized in a slurry process has been studied, in its nascent state, after recrystallization on rapid cooling from the melt and after hot compression molding to a film, by DSC, effect of annealing the recrystallized specimen at 120 similar to 130 degreesC, morphology by polarizing optical microscopy and small angle X-ray scattering. Based on the experimental results obtained the macromolecular condensed state of the nascent UHPE powder is a rare case of a multi-chain condensed state of non-interpenetrating chains, involving interlaced extended chain crystalline layers and relaxed parallel chain amorphous layers. On melting, a nematic rubbery state of nanometer size domain resulted. The nematic-isotropic transition temperature was judged from literature data to be at least 220 degreesC, possibly higher than 300 degreesC, the exact temperature is however not sue because of chain degradation at such high temperatures. The recrystallization process from the melt is a crystallization from a nematic rubbery state. The drop of remelting peak temperature by 10 K of the specimen recrystallized from its melt as compared to the nascent state has its origin in the decrease both of the crystalline chain stem length and of the degree of crystallinity. The remelting peak temperature could be returned close to that of the nascent state by annealing at 120 similar to 130 degreesC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mechanical and structural properties of blends of phenolphthalein poly(ether sulfone) (PBS-C) with ultra-high molecular weight polyethylene (UHMWPE) were investigated using tensile and bending testing, scanning electron microscopy and transition electron microscopy. The incorporation of minor amounts of UHMWPE (2 wt.-%) into PES-C has a reinforcement effect. With higher concentrations of UHMWPE, the mechanical properties decrease gradually. Structural studies demonstrated that the blends are multiphasic in the whole composition range. The minor UHMWPE, dispersed uniformly and oriented along the flow direction, as well as the strong interfacial adhesion contribute to the increase of the mechanical performance of the blends. The domain size of the UHMWPE phase was found to increase with the increase of its concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydrogen permeation behaviours of high strength steel 35CrMo under different cyclic wet-dry conditions have been investigated by using Devanathan-Stachurski's technique. Four electrolytes were used: distilled water, seawater, seawater containing 1500 ppm H2S and seawater containing 0.03 mol L-1 SO2. The corrosion weight loss of 35CrMo in the wet-dry cycles was measured simultaneously. The experimental results show that hydrogen can be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles and the permeation current density during a wet-dry cycle showed a maximum during the drying process. The hydrogen permeation was obviously promoted by Cl- ions, H2S and SO2. The hydrogen permeation in the real marine atmosphere has also been investigated. There is a clear correlation between the amount of hydrogen permeated and the corrosion weight losses. Results show the importance of hydrogen permeation that merits further investigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the quantitative strain characterization in semiconductor heterostructures of silicon-germaniums (Si(0.76)Geo(0.24)) grown on Si substrate by an ultra-high vacuum chemical vapor deposition system. The relaxed SiGe virtual substrate has been achieved by thermal annealing of the SiGe film with an inserted Ge layer. Strain analysis was performed using a combination of high-resolution transmission electron microscopy and geometric phase analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An electroabsorption modulator using the intrastep quantum well (IQW) active region is fabricated for optical network systems. The strain-compensated InGaAsP/InGaAsP IQW shows good material quality and improved modulation properties, high extinction ratio elliciency 10 dB/V and low capacitance (< 0.42 pF), with which an ultra high frequency (> 15 GHz) can be obtained. High-speed measurement under high-power excitation shows no power saturation up to excitation power of 21 dBm. To our knowledge, the input optical power is the highest reported for multi-quantum well EAMs without heat sinks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We fabricate an electro-absorption modulator for optical network system using a new strategy, the improved modulation properties of the strained InGaAs/InAlAs MQW show it's polarization independent, high extinction ratio (> 40dB) and low capacitance (C <0.6pF) which can achieve an ultra-high frequency(> 10GHz). The device is be used in 10Gbps optical time division multiplex (OTDM) system as a signal generator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple and facile procedure to synthesize a novel hybrid nanoelectrocatalyst based on polyaniline (PANI) nanofiber-supported supra-high density Pt nanoparticles (NPs) or Pt/Pd hybrid NPs without prior PANI nanofiber functionalization at room temperature is demonstrated. This represents a new type of ID hybrid nanoelectrocatalyst with several important benefits. First, the procedure is very simple and can be performed at room temperature using commercially available reagents without the need for templates and surfactants. Second, ultra-high density small "bare" Pt NPs or Pt/Pd hybrid NPs are grown directly onto the surface of the PANI nanofiber, without using any additional linker. Most importantly, the present PANI nanofiber-supported supra-high density Pt NPs or Pt/Pd hybrid NPs can be used as a signal enhancement element for constructing electrochemical devices with high performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metallic nanowires have many attractive properties such as ultra-high yield strength and large tensile elongation. However, recent experiments show that metallic nanowires often contain grain boundaries, which are expected to significantly affect mechanical properties. By using molecular dynamics simulations, here, we demonstrate that polycrystalline Cu nanowires exhibit tensile deformation behavior distinctly different from their single-crystal counterparts. A significantly lowered yield strength was observed as a result of dislocation emission from grain boundaries rather than from free surfaces, despite of the very high surface to volume ratio. Necking starts from the grain boundary followed by fracture, resulting in reduced tensile ductility. The high stresses found in the grain boundary region clearly play a dominant role in controlling both inelastic deformation and fracture processes in nanoscale objects. These findings have implications for designing stronger and more ductile structures and devices on nanoscale.