38 resultados para symbolic bisimulation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
本文首先运用Symbolic Computation在半物理平面(x,)上计算了毛细重力波的六阶解,得到了波形与色散关系,低阶解与 Hogan 结果一致。
Resumo:
引入时间符号迁移图的概念,作为既涉及通讯又具有实时性的并发系统的模型。该文给出了这种迁移图时间互模拟的算法,并证明了该算法的正确性。
Resumo:
IEEE Comp Soc, IFIP, Tianjin Normal Univ
Resumo:
In this paper, a method to construct topological template in terms of symbolic dynamics for the diamagnetic Kepler problem is proposed. To confirm the topological template, rotation numbers of invariant manifolds around unstable periodic orbits in a phase space are taken as an object of comparison. The rotation numbers are determined from the definition and connected with symbolic sequences encoding the periodic orbits in a reduced Poincare section. Only symbolic codes with inverse ordering in the forward mapping can contribute to the rotation of invariant manifolds around the periodic orbits. By using symbolic ordering, the reduced Poincare section is constricted along stable manifolds and a topological template, which preserves the ordering of forward sequences and can be used to extract the rotation numbers, is established. The rotation numbers computed from the topological template are the same as those computed from their original definition.
Resumo:
A metric representation of DNA sequences is borrowed from symbolic dynamics. In view of this method, the pattern seen in the chaos game representation of DNA sequences is explained as the suppression of certain nucleotide strings in the DNA sequences. Frequencies of short nucleotide strings and suppression of the shortest ones in the DNA sequences can be determined by using the metric representation.
Resumo:
A method to determine the admissibility of symbolic sequences and to find the unstable periodic orbits corresponding to allowed symbolic sequences for the diamagnetic Kepler problem is proposed by using the ordering of stable and unstable manifolds. By investigating the unstable periodic orbits up to length 6, a one to one correspondence between the unstable periodic orbits and their corresponding symbolic sequences is shown under the system symmetry decomposition.
Resumo:
On the basis of signed-digit negabinary representation, parallel two-step addition and one-step subtraction can be performed for arbitrary-length negabinary operands.; The arithmetic is realized by signed logic operations and optically implemented by spatial encoding and decoding techniques. The proposed algorithm and optical system are simple, reliable, and practicable, and they have the property of parallel processing of two-dimensional data. This leads to an efficient design for the optical arithmetic and logic unit. (C) 1997 Optical Society of America.
Resumo:
A compact two-step modified-signed-digit arithmetic-logic array processor is proposed. When the reference digits are programmed, both addition and subtraction can be performed by the same binary logic operations regardless of the sign of the input digits. The optical implementation and experimental demonstration with an electron-trapping device are shown. Each digit is encoded by a single pixel, and no polarization is included. Any combinational logic can be easily performed without optoelectronic and electro-optic conversions of the intermediate results. The system is compact, general purpose, simple to align, and has a high signal-to-noise ratio. (C) 1999 Optical Society of America.
Resumo:
A novel, to our knowledge, two-step digit-set-restricted modified signed-digit (MSD) addition-subtraction algorithm is proposed. With the introduction of the reference digits, the operand words are mapped into an intermediate carry word with all digits restricted to the set {(1) over bar, 0} and an intermediate sum word with all digits restricted to the set {0, 1}, which can be summed to form the final result without carry generation. The operation can be performed in parallel by use of binary logic. An optical system that utilizes an electron-trapping device is suggested for accomplishing the required binary logic operations. By programming of the illumination of data arrays, any complex logic operations of multiple variables can be realized without additional temporal latency of the intermediate results. This technique has a high space-bandwidth product and signal-to-noise ratio. The main structure can be stacked to construct a compact optoelectronic MSD adder-subtracter. (C) 1999 Optical Society of America.
Resumo:
An efficient one-step digit-set-restricted modified signed-digit (MSD) adder based on symbolic substitution is presented. In this technique, carry propagation is avoided by introducing reference digits to restrict the intermediate carry and sum digits to {1,0} and {0,1}, respectively. The proposed technique requires significantly fewer minterms and simplifies system complexity compared to the reported one-step MSD addition techniques. An incoherent correlator based on an optoelectronic shared content-addressable memory processor is suggested to perform the addition operation. In this technique, only one set of minterms needs to be stored, independent of the operand length. (C) 2002 society or Photo-Optical Instrumentation Engineers.