121 resultados para photovoltaic
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
InGaN photovoltaic structures with p-n junctions have been fabricated by metal organic chemical vapour deposition. Using double-crystal X-ray diffraction measurements, it was found that the room temperature band gaps of p-InGaN and n-InGaN films were 2.7 and 2.8 eV, respectively. Values of 3.4 x 10(-2) mA cm(-2) short-circuit current, 0.43 V open-circuit voltage and 0.57 fill factor have been achieved under ultraviolet illumination (360 nm), which were related to p-n junction connected back-to-back with a Schottky barrier and many defects of the p-InGaN film. 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The response of photonic memory effect in I-V characteristics of a specially designed photonic memory cell was reported. When the cell is biased in a storage mode, the optical excitation with the photon's energy larger than the energy gap gives rise to a step-like jump in the current. A set-up was used to measure the transient photocurrent at the biases where the step-like jump showed up. It is proved that the falling transient edge of the photocurrent, as the photoexcitation turns off, mainly maps the decaying of electrons and holes, which were previously stored in the cell during the illumination. Its time constant is a measure of photonic memory time.
Resumo:
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the proposed system is a V-shaped structure with two polycrystalline solar cells. Compared to solar cells in a conventional approach, the V-shaped structure enhances external quantum efficiency and leads to an increase of 24% in power conversion efficiency.
Resumo:
We report electroluminescence in hybrid ZnO and conjugated polymer poly[2-methoxy-5-(3', 7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) bulk heterojuriction photovoltaic cells. Photolummescence quenching experimental results indicate that the ultra,fast photoinduced electron transfer occurs from MDMO-PPV to ZnO under illumination. The ultrafast photoinduced electron transfer effect is induced because ZnO has an electron affinity about 1.2 eV greater than that of MDMO-PPV. Electron 'back transfer' can occur if the interfacial barrier between ZnO and MDMO-PPV can be overcome by applying a substantial electric field. Therefore, electroluminescence action due to the fact that the back transfer effect can be observed in the ZnO:MDMO-PPV devices since a forward bias is applied. The photovoltaic and electroluminescence actions in the same ZnO:MDMO-PPV device can be induced by different injection ways: photoinjection and electrical injection. The devices are expected to provide an opportunity for dual functionality devices with photovoltaic effect and electroluminescence character.
Resumo:
The surface photovoltage (SPV) effect induced by the defect states in semi-insulating (SI) GaAs was studied. The PV response below the band edge was measured at room temperature with a de optical biasing. The spectra were found to be strongly dependent on the surface recombination and were attributed to formation of the carrier concentration gradient near the surface region, showing that SPV is a very sensitive and nondestructive technique for characterizing the surface quality of the SI-GaAs wafers.
Resumo:
We have studied the photovoltaic effect in cubic GaN on GaAs at room temperature. The photovoltaic spectra of cubic GaN epitaxial film were concealed by the photovoltaic effect from the GaAs substrate unless additional illumination of a 632.8 nm He-Ne laser beam was used to remove the interference of the GaAs absorption in the measurement. On the basis of the near-band-edge photovoltaic spectra of cubic GaN, we obtained the minority carrier diffusion lengths of about 0.32 and 0.14 mu m for two undoped n-type cubic GaN samples with background concentrations of 10(14) and 10(18) cm(-3), respectively. (C) 1999 American Institute of Physics. [S0003-6951(99)00450-7].
Resumo:
Tandem amorphous silicon solar cells have attracted extensive interest because of better performance than single junction counterpart. As n/p junctions play an important role in the current transportation of tandem solar cells, it is important to design and fabricate good n/p junctions.The properties of the n/p junction of amorphous silicon (a-Si) were studied. We investigate the effect of interposing a nanocrystalline p(+) layer between n (top cell) and p (bottom cell) layers of a tandem solar cell. The crystalline volume fraction, the band gap, the conductivity and the grain size of the nanocrystalline silicon (nc-Si) p(+) layer could be modulated by changing the deposition parameters.Current transport in a-Si based n/p ("tunnel") junctions was investigated by current-voltage measurements. The voltage dependence on the resistance (V/J) of the tandem cells was examined to see if n/p junction was ohmic contact. To study the affection of different doping concentration to the properties of the nc-Si p(+) layers which varied the properties of the tunnel junctions, three nc-Si p(+) film samples were grown, measured and analyzed.
Resumo:
Concentrated photovoltaic systems (CPVSs) draw more and more attention because of high photovoltaic conversion efficiency, low consumption of solar cell, and low cost of power generation. However, the fallibility of the tracker in such systems has hindered their practical application for more than twenty years. The tracker is indispensable for a CPVS since only normal-incident sunlight can be focused on the solar cell chips, even a slight deviation of incident light will result in a significant loss of solar radiation, and hence a distinct decrease in electricity output. Generally, the more accurate the tracker is, the more reliable the system is. However, it is not exactly the case for a CPVS reliability, because the more accurate the tracker is, the better environment it demands. A CPVS is usually has to subjected to harsh environmental conditions, such as strong wind, heavy rain or snow, and huge changes of temperature, which leads to the invalidation of the system's high-accuracy tracker. Hence, the reliability of a CPVS cannot be improved only by enhancing the tracker's accuracy. In this paper, a novel compound concentrator, combination of Fresnel lens and photo-funnel, has been adopted in a prototype CPVS. Test results show that the compound concentrator can relax the angle tolerance from one tenth to five degrees of arc at 400 suns, which can help a CPVS endure serious environment and remain its reliability over long period. The CPVS with compound concentrator is attractive for commercial application.
Resumo:
Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Poly(3,4-ethylenedioxythiopliene):poly(styrene sulfonate) (PEDOT:PSS) films have been electrochemically polymerized in situ on ITO glass substrate in boron trifluoride diethyl etherate electrolyte (BFEE). Cyclic voltammograms show good redox activity and stability of the PEDOT films. These films had been directly used to fabricate organic-inorganic hybrid solar cells with the structure of ITO/PEDOT/ZnO:MDMC-PPV/Al. The solar cells made of electrochemically polymerized films exhibit higher energy conversion efficiencies compared with that prepared by the spin-coating method, and the highest value is 0.33%. This in-situ electropolymerized method effectively simplifies fabricating procedures and may blaze a facile and economical route for producing high-efficiency solar cells.
Resumo:
A photovoltaic quantum dot infrared photodetector with InAs/GaAs/AlGaAs structures is reported. The detector is sensitive to normal incident light. At zero bias and 78 K, a clear spectral response in the range of 2 -7 mu m has been obtained with peaks at 3.1, 4.8 and 5.7 mu m. The bandgap energies of GaAs and Al0.2Ga0.8As at 78K are calculated and the energy diagram of the transitions in the Quantum-Dot Infrared Photodetector (QDIP) is given out. The photocurrent signals can be detected up to 110 K, which is state-of-the-art for photovoltaic QDIP. The photovoltaic effect in our detector is a result of the enhanced band asymmetry as we design in the structure.
Resumo:
The photovoltaic conversion efficiency for monolithic GaInP/GaInAs/Ge triple-junction cell with various bandgap combination (300 suns, AM1.5d) was theoretically calculated. An impressive improvement on conversion efficiency was observed for a bandgap combination of 1.708, 1.194, and 0.67 eV. A theoretical investigation was carried out on the effect of dislocation on the metamorphic structure's efficiency by regarding dislocation as minority-carrier recombination center. The results showed that only when dislocation density was less than 1.6x10(6) cm(-2), can this metamorphic combination exhibit its efficiency advantage over the fully-matched combination. In addition, we also briefly evaluated the lattice misfit dependence of the dislocation density for a group of metamorphic triple-junction system, and used it as guidance for the choice of the proper cell structure.
Resumo:
We present a comprehensive study of the one-dimensional modulation instability of broad optical beams in biased photo refractive-photovoltaic crystals under steady-state conditions. We obtain the one-dimensional modulation instability growth rate by globally treating the space-charge field and by considering distinction between values of Eo in nonlocal effects and local effects in the space-charge field, where Eo is the field constant correlated with terms in the space-charge field, which depends on the external bias field, the bulk photovoltaic effect, and the ratio of the optical beam's intensity to that of the dark irradiance. The one-dimensional modulation instability growth rate in local effects can be determined from that in nonlocal effects. When the bulk photovoltaic effect is neglectable, irrespective of distinction between values of Eo in nonlocal effects and local effects in the space-charge field, the one-dimensional modulation instability growth rates in nonlocal effects and local effects are those of broad optical beams studied previously in biased photorefractive-nonphotovoltaic crystals. When the external bias field is absent, the one-dimensional modulation instability growth rates in nonlocal effects and local effects predict those of broad optical beams in open- and closed-circuit photorefractive-photovoltaic crystals. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
We show that bright-dark vector solitons are possible in biased photorefractive-photovoltaic crystals under steady-state conditions, which result from both the bulk photovoltaic effect and the spatially nonuniform screening of the external bias field. The analytical solutions of these vector solitons can be obtained in the case of \sigma\ much less than 1, where sigma is the parameter controlling the intensities of the two optical beams. In the limit of -1 < sigma much less than 1, these vector solitons can also be determined by use of simple numerical integration procedures. When the bulk photovoltaic effect is neglectable, these vector solitons are bright-dark vector screening solitons studied previously in the \sigma\ much less than 1 regime, and predict bright-dark vector screening solitons in the -1 < sigma less than or equal to 1 regime. When the external bias field is absent, these vector solitons predict bright-dark vector photovoltaic solitons in closed and open circuits. (C) 2002 Elsevier Science B.V. All rights reserved.