73 resultados para oil-water separation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The oil/water two-phase flow inside T-junctions was numerically simulated with a 3-D two-fluid model, and the turbulence was described using the mixture k - epsilon model. Some experiments of oil/water flow inside a single T-junction were conducted in the laboratory. The results show that the separating performance of T-junction largely depends oil the inlet volumetric fraction and flow patterns. A reasonable agreement is reached between the numerical simulation and the experiments for both the oil fraction distribution and the separation efficiency.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.
Resumo:
This paper investiges the effect of pipe diameter on flow pattern transition boundary in oil water vertical flows, and proposes a model to determine the maximum inner diameter (D_{infty s}) of a pipe in which the slug flow would not occur When pipe inner diameter D>D_{infty s}, only bubble flow exists, while D
Resumo:
本文采用数值模拟的方法研究油水混合物在直管和螺旋管中的流动状况.计算采用Euler-Euler法和Euler模型:支配油水分离两相流动的基本方程包括连续方程和动量方程,湍流模型采用多相流中混合型k-ε模式,基本方程的离散和求解采用SIMPLE算法.利用Fluent软件,以直管和螺旋管为例进行了计算,获得了初步计算结果.计算表明,本文所用方法可以较好地模拟直管中油水在重力作用下的分离,以及螺旋分离器中油水在重力和离心力共同作用下的分离现象.并可为实验研究提供参考。
Resumo:
采用改进的BP神经网络模型模拟水力旋流器的油水分离过程.根据水力旋流器的实际运行条件,确定旋流器模型设计中的优化神经网络结构,将遗传算法用于优化三层BP神经网络的初始权重,采用PRP共轭梯度法优化BP算法.结果表明,采用人工神经网络模型预测油水分离水力旋流器的分离性能是切实可行的,它能成功地模拟旋流器的分离过程,进而实现旋流器操作控制的优化.
Resumo:
High-efficiency separation of the oil/gas/water mixtures is a significant issue in offshore oil industry. To reduce the total cost by means of reduction in weight and space compared with conventional separators, a novel compact compound oil/gas/water separator is developed. The research works on oil-gas-water separation by compound separating techniques is described in this paper. The innovative separator is a gravity settling tank with helical pipes within and T-shaped pipes outside. Both experiments and numerical simulations are presented to study the separating performance and efficiency of the helical pipes, which are the main part of the separator.
Resumo:
This work is devoted to study of the slip phenomenon between phases in water-oil two-phase flow in horizontal pipes. The emphasis is placed on the effects of input fluids flow rates, pipe diameter and viscosities of oil phase on the slip. Experiments were conducted to measure the holdup in two horizontal pipes with 0.05 m diameter and 0.025 m diameter, respectively, using two different viscosities of white oil and tap water as liquid phases. Results showed that the ratios of in situ oil to water velocity at the pipe of small diameter are higher than those at the pipe of big diameter when having same input flow rates. At low input water flow rate, there is a large deviation on the holdup between two flow systems with different oil viscosities and the deviation becomes gradually smaller with further increased input water flow rate. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols and is a feedstock for production of biodiesel fuel now. The transesterification of acid oil and methanol to biodiesel was catalyzed by immobilized Candida lipase in fixed bed reactors. The reactant solution was a mixture of acid oil, water, methanol and solvent (hexane) and the main product was biodiesel composed of fatty acid methyl ester (FAME) of which the main component was methyl oleate. The effects of lipase content, solvent content, water content temperature and flow velocity of the reactant on the reaction were analyzed. The experimental results indicate that a maximum FAME content of 90.18% can be obtained in the end product under optimum conditions. Most of the chemical and physical properties of the biodiesel were superior to the standards for 0(#) diesel (GB/T 19147) and biodiesel (DIN V51606 and ASTM D6751).
Resumo:
The separation of ethyl acetate and ethanol (EtOH) is important but difficult due to their close boiling points and formation of an azeotropic mixture. The separation of the azeotropic mixture of ethyl acetate and EtOH using the hydrophilic ionic liquids (ILs) 1-alkyl-3-methylimidazolium chloride (alkyl = butyl, hexyl, and octyl) ([C(n)mim]Cl, n = 4, 6, 8) and 1-allyl-3-methylimidazolium chloride and bromide ([Amim]Cl and [Amim]Br) has been investigated. Triangle phase diagrams of five ILs with ethyl acetate and EtOH were constructed, and the biphasic regions were found as follows: [Amim]Cl > [Amim]Br > [C(4)mim]Cl > [C(6)mim]Cl > [C(8)mim]Cl. The mechanisms of the ILs including cation, anion, and polarity effect were discussed.
Resumo:
The reservoir of Zhongerbei region in Gudao Oilfield is a typical fluvial facies deposit, its serious heterogeneity of the reservoir caused the distribution of remaining oil in mature reservoirs is characterized by highly scattered in the whole field, and result to declination of production, tap potential and stabilize production is more difficult. Reservoir modeling based on lay scale can not fulfill requirement. How to further studied reservoir heterogeneity within the unit and establish the finer reservoir modeling is a valid approach to oil developing. The architectural structure elements analysis is the effectively method to study reservoir heterogeneity. Utilize this method, divide the reservoirs of Gudao Oilfield into ten hierarchies. The priority studying is sixth, seven hierarchies, ie single sand layers sand bodies By the identification of sixth, seven hierarchies, subdivide the reservoir to the single genetic unit. And to subdivide by many correlation means, such as isometry and phase transition, accomplish closure and correlation of 453 wells.Connectting fluvial deposit pattern, deposition characteristic with its log, build the inverting relation between “sedimentary facies” and “electrofacies” The process emphasize genetic communication and collocation structure of genetic body in space. By detailed architecture analyses sandbodies’ structure, this paper recognize seven structure elements, such as major channel, abandoned channel, natural levee, valley flat, crevasse splay, crevasse channel and floodplain fine grain.Combination identification of architectural structure elements with facieology and study of deposition characteristic, can further knowing genesis and development of abandoned channel. It boost the accuracy to separation in blanket channel bodies distribution, and provide reference to retrieving single channel boundary. Finally, establish fine plane and section construction. On basis architectural structure map, barrier beds and interbeds isopach map and mini-structure map, considering single thin layers to be construction unit, the main layer planimetric maps have drawn and the inner oil-water boundary have revealed. All account that architectural structure elements control remaining oil distribution in layer, and develop the study on architectural structure elements to direct horizontal well is succesful.
Resumo:
In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.
Resumo:
研究了应用射流泵输送油水两相管流时泵对下游管道中流型和压降的影响。实验管线为内径50mm的透明有机玻璃管,管线从入口到分离器长约35m,实验段由一个垂直倒U型管和一个长3m水平管组成。分别给出了不同入口条件下实验管段的流型图和压降图。结果表明:采用射流泵输送油水两相流动,对下游管道流型和油水乳化速度有着显著的影响,但对下游管道内的压降随混合流速和体积份额的变化趋势影响很小。
Resumo:
该文研究了两种直径的直管油水两相流动对流型和相含率的影响和在不同管径的水平并行分支管路中的相含率变化规律。实验设备包括内径为50mm的水平主管道和内径为25mm的分支管路。得到了不同入口条件下实验管段的流型和相含率图。实验指出:管道的尺度变化对于流型的影响较小,但对于油水两相的相含率和速度滑移有显著的作用。当油水两相流在并行分支管路中同时流动时,随着入口处水的表观流速增大,并行主管的截面油含率与并行分支管的差距逐渐缩小。
Resumo:
A dynamic 3D pore-scale network model is formulated for investigating the effect of interfacial tension and oil-water viscosity during chemical flooding. The model takes into account both viscous and capillary forces in analyzing the impact of chemical properties on flow behavior or displacement configuration, while the static model with conventional invasion percolation algorithm incorporates the capillary pressure only. From comparisons of simulation results from these models. it indicates that the static pore scale network model can be used successfully when the capillary number is low. With the capillary increases due to the enhancement of water viscosity or decrease of interfacial tension, only the quasi-static and dynamic model can give insight into the displacement mechanisms.