15 resultados para hard real-time system

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

固定优先级任务可调度性判定是实时系统调度理论研究的核心问题之一.目前已有的各种判定方法可归结为两大类:多项式时间调度判定和确切性判定.多项式时间调度判定通常采用调度充分条件来进行,为此,许多理想条件下基于RM(rate monotonic)调度算法的CPU利用率最小上界被提了出来.确切性判定利用RM调度的充要条件,保证任何任务集均可被判定,并且判定结果是确切的.但是由于时间复杂度较差,确切性判定方法难以实现在线分析.提出了一种改进的RM可调度性判定方法(improved schedulability test algorithm,简称ISTA).首先介绍了任务调度空间这一概念,并提出了二叉树表示,然后进一步提出了相关的剪枝理论.在此基础上,研究了任务之间可调度性的相关性及其对判定任务集可调度性的影响,提出并证明了相关的定理.最后基于提出的定理,给出了一种改进的伪多项式时间可调度性判定算法,并与已有的判定方法进行了比较.仿真结果表明,该算法平均性能作为任务集内任务个数的函数具有显著提高.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies the development of a real-time stereovision system to track multiple infrared markers attached to a surgical instrument. Multiple stages of pipeline in field-programmable gate array (FPGA) are developed to recognize the targets in both left and right image planes and to give each target a unique label. The pipeline architecture includes a smoothing filter, an adaptive threshold module, a connected component labeling operation, and a centroid extraction process. A parallel distortion correction method is proposed and implemented in a dual-core DSP. A suitable kinematic model is established for the moving targets, and a novel set of parallel and interactive computation mechanisms is proposed to position and track the targets, which are carried out by a cross-computation method in a dual-core DSP. The proposed tracking system can track the 3-D coordinate, velocity, and acceleration of four infrared markers with a delay of 9.18 ms. Furthermore, it is capable of tracking a maximum of 110 infrared markers without frame dropping at a frame rate of 60 f/s. The accuracy of the proposed system can reach the scale of 0.37 mm RMS along the x- and y-directions and 0.45 mm RMS along the depth direction (the depth is from 0.8 to 0.45 m). The performance of the proposed system can meet the requirements of applications such as surgical navigation, which needs high real time and accuracy capability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-time detection of single electron tunneling through a T-shaped double quantum dot is simulated, based on a Monte Carlo scheme. The double dot is embedded in a dissipative environment and the presence of electrons on the double dot is detected with a nearby quantum point contact. We demonstrate directly the bunching behavior in electron transport, which leads eventually to a super-Poissonian noise. Particularly, in the context of full counting statistics, we investigate the essential difference between the dephasing mechanisms induced by the quantum point contact detection and the coupling to the external phonon bath. A number of intriguing noise features associated with various transport mechanisms are revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An external cavity semiconductor laser interferometer used to measure far distance micro-vibration in real time is proposed. In the interferometer, a single longitudinal mode and excellent coherent characteristic grating external cavity semiconductor laser is constructed and acted as a light source and a phase compensator. Its coherent length exceeds 200 meters. The angle between normal and incidence beam of the far object is allowed to change in definite range during the measurement with this interferometer, and this makes the far distance interference measurement easier and more convenient. Also, it is not required to keep the amplitudes of the first and second harmonic components equal, and then the dynamic range is increased. A feedback control system is used to compensate the phase disturbance between the two interference beams introduced by environmental vibration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a real-time and in situ optical measuring system is reported to observe high-velocity deformations of samples subjected to impact loading. The system consists of a high-speed camera, a He-Ne laser, a frame grabber, a synchronization device and analysis software based on digital correlation theory. The optical system has been adapted to investigate the dynamic deformation field and its evolution in notched samples loaded by an split Hopkinson tension bar, with a resolution of 50 pin and an accuracy of 0.5 mum. Results obtained in experiments are discussed and compared with numerical simulations. It is shown that the measuring system is effective and valid.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical interference method is a promising technique for measuring temperature, density, and concentration in fluids. The non-intrusive and non-invasive nature of its optical techniques to the measured section are its most outstanding features. However, the adverse experiment environment, especially regarding shaking and vibrating, greatly restricts the application of the interferometer. In the present work, an optical diagnostic system consisting of a Mach-Zehnder interferometer (named after physicists Ludwig Mach) and an image processor has been developed that increases the measuring sensitivity compared to conventional experimental methods in fluid mechanics. An image processor has also been developed for obtaining quantitative results by using Fourier transformation. The present facility has been used in observing and measuring the mass transfer process of a water droplet in EAFP protein solution under microgravity condition provided by the satellite Shi Jian No. 8.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the real-time deformation fields are observed in two different kinds of hole-excavated dog-bone samples loaded by an SHTB, including single hole sample and dual holes sample with the aperture size of 0.8mm. The testing system consists of a high-speed camera, a He-Ne laser, a frame grabber and a synchronization device with the controlling accuracy of I microsecond. Both the single hole expanding process and the interaction of the two holes are recorded with the time interval of 10 mu s. The observed images on the sample surface are analyzed by newly developed software based on digital correlation theory and a modified image processing method. The 2-D displacement fields in plane are obtained with a resolution of 50 mu m and an accuracy of 0.5 mu m. Experimental results obtained in this paper are proofed, by compared with FEM numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tributyltin (TBT) is widely used as antifouling paints, agriculture biocides, and plastic stabilizers around the world, resulting in great pollution problem in aquatic environments. However, it has been short of the biomonitor to detect TBT in freshwater. We constructed the suppression subtractive hybridization library of Tetrahymena thermophila exposed to TBT, and screened out 101 Expressed Sequence Tags whose expressions were significantly up- or down-regulated with TBT treatment. From this, a series of genes related to the TBT toxicity were discovered, such as glutathione-S-transferase gene (down-regulated), plasma membrane Ca2+ ATPase isoforms 3 gene (up-regulated) and NgoA (up-regulated). Furthermore, their expressions under different concentrations of TBT treatment (0.5-40 ppb) were detected by real time fluorescent quantitative PCR. The differentially expressed genes of T thermophila in response to TBT were identified, which provide the basic to make Tetrahymena as a sensitive, rapid and convenient TBT biomonitor in freshwater based on rDNA inducible expression system. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using remote sensing technique, we investigated real-time Nostoc sphaeroides Kiltz (Cyanobacterium) in Closed System under microgravity by SHENZHOU-2 spacecraft in January 2001. The experiments had 1g centrifuges in space for control and ground control group experiments were also carried out in the same equipments and under the same controlled condition. The data about the population growth of Nostoc sp. of experiments and temperature changes of system were got from spacecraft every minute. From the data, we can find that population growth of Nostoc sp. in microgravity group was higher than that of other groups in space or on ground, even though both the control I g group in space and I g group on ground indicated same increasing characteristics in experiments. The growth rate of 1.4g group (centrifuged group on ground) was also promoted during experiment. The temperature changes of systems are also affected by gravity and light. Some aspects about those differences were discussed. From the discussion of these results during experiment, it can be found that gravity is the major factor to lead to these changes. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The real-time monitoring of the second-harmonic generation (SHG) was used to optimize the poling condition and to study the nonlinear optical (NLO) properties of the polyetherketone (PEK-c) guest-host polymer films. The high second-order NLO coefficient chi(33)((2)) = 11.02 pm/v measured at 1.064 mu m was achieved when the weight percent of DR1 guest in the polymer system is 20%. The NLO activity of the poled DR1/PEK-c polymer film can maintain more than 80% of its initial value when temperature is under 100 degrees C, and the normalized second-order NLO coefficient can maintain more than 85% after 2400 s at 80 degrees C. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important concept proposed in the early stage of robot path planning field is the shrinking of the robot to a point and meanwhile expanding of the obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision free path for a point robot among the Cspace obstacles. However, the research experiences obtained so far have shown that the calculation of the Cspace obstacles is very hard work when the following situations occur: 1. both the robot and obstacles are not polygons and 2. the robot is allowed to rotate. This situation is even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. Obviously a direct path planning approach without the calculation of the Cspace obstacles is strongly needed. This paper presents such a new real-time robot path planning approach which, to the best of our knowledge, is the first one in the robotic community. The fundamental ideas are the utilization of inequality and optimization technique. Simulation results have been presented to show its merits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the data processing technologies of interferential spectrometer, a sort of real-time data processing system on chip of interferential imaging spectrometer was studied based on large capacitance and high speed field programmable gate array( FPGA) device. The system integrates both interferograrn sampling and spectrum rebuilding on a single chip of FPGA and makes them being accomplished in real-time with advantages such as small cubage, fast speed and high reliability. It establishes a good technical foundation in the applications of imaging spectrometer on target detection and recognition in real-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification. (C) 2000 Elsevier Science B.V. All rights reserved.