34 resultados para film stack design
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Used in chirped-pulse amplification system and based on multi-layer thin film stack, pulse compressor gratings (PCG) are etched by ion-beam and holographic techniques. Diffraction efficiency and laser-induced damage threshold rely on the structural parameters of gratings. On the other hand, they depend greatly on the design of multi-layer. A theoretic design is given for dielectric multi-layer, which is exposed at 413.1 nm and used at 1053 nm. The influences of coating design on optical characters are described in detail. The analysis shows that a coating stack of H3L (H2L) (boolean AND) 9H0.5L2.01H meets the specifications of PCG well. And there is good agreement of transmission between experimental and the theoretic design. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
应用于啁啾脉冲放大技术中的脉宽压缩光栅是基于多层膜作为基底,利用全息干涉技术和离子束技术刻蚀而成。脉宽压缩光栅的衍射效率和抗激光损伤阈值一方面依赖于光栅结构的设计,另一方面很大程度上取决于作为基底的多层膜的设计。给出了以413.1nm作为写入波长,1053nm作为使用波长的多层介质光栅膜的设计.样品在ZZS-800F、型真空镀膜机上采用电子束蒸发方式沉积而成,并给出了膜系结构对光学性能影响因素的详细分析,结果表明膜系H3L(H2L)^9H0.5L2.03H满足光栅膜的指标。给出了样品光学特性测试,其使用波
Resumo:
通过对主膜系添加匹配层并借助计算机对膜系进行优化,设计出结构规整、性能优良的1064ilm倍频波长分离膜。用电子束蒸发及光电极值监控技术在K9玻璃基底上沉积薄膜,将样品置于空气中在260℃温度下进行3h热退火处理。然后用Lambda 900分光光度计测量了样品的光谱性能;用表面热透镜(STL)技术测量了样品的弱吸收值;用调Q脉冲激光装置测试了样品的抗激光损伤阈值(LIDT)。实验结果发现,样品的实验光谱性能与理论光谱性能有很好的一致性。退火前后其光谱性能几乎没有发生温漂,说明薄膜的温度稳定性好;同时退火使
Resumo:
提出了一种用于提高介质减反膜的损伤阈值的新的方法,在H2.5L (H:HfO2, L:SiO2)的膜层与基底之间引入4个1/4光学厚度的SiO2薄膜,发现抗激光损伤阈值提高了50%,并且保持1064nm处的反射率低于0.09%。本文分析了造成这一提高的机制,一定厚度的氧化硅过渡层的引入是一种提高介质减反膜的损伤阈值的灵活有效的方法。
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, 2 X 2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.
Resumo:
Color filters are key components in an optical engine projection display system. In this paper, a new admittance-matching method for designing and fabricating the high performance filters is described, in which the optimized layers are limited to the interfaces between the stack (each combination of quarter-wave-optical-thickness film layers is called a stack) and stack, or between stack and substrate, or between stack and incident medium. This method works well in designing filters containing multiple stacks such as UV-IR cut and broadband filters. The tolerance and angle sensitivity for the designed film stacks are analyzed. The thermal stability of the sample color filters was measured. A good result in optical performance and thermal stability was obtained through the new design approach. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Thin-film design used to fabricate multi-layer dielectric (MLD) gratings should provide high transmittance during holography exposure, high reflectance at use wavelength and sufficient manufacturing latitude of the grating design making the MLD grating achieve both high diffraction efficiency and low electric field enhancement. Based on a (HLL)H-9 design comprising of quarter-waves of high-index material and half-waves of low-index material, we obtain an optimum MLD coating meeting these requirements by inserting a matching layer being half a quarter-wave of Al2O3 between the initial design and an optimized HfO2 top layer. The optimized MLD coatings exhibits a low reflectance of 0.017% under photoresist at the exposure angle of 17.8 degrees for 413 nm light and a high reflectance of 99.61% under air at the use angle of 51.2 degrees for 1053 nm light. Numerical calculation of intensity distribution in the photoresist coated on the MLD film during exposure shows that standing-wave patterns are greatly minimized and thus simulation profile of photoresist gratings after development demonstrates smoother shapes with lower roughness. Furthermore, a MLD gratings with grooves etched into the top layer of this MLD coating provides a high diffraction efficiency of 99.5% and a low electric field enhancement ratio of 1.53. This thin-film design shows perfect performances and can be easily fabricated by e-beam evaporation. (c) 2006 Elsevier B.V. All rights reserved.
Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells
Resumo:
Metallic back structures with one-dimensional periodic nanoridges attached to a thin-film amorphous Si (a-Si) solar cell are numerically studied. At the interfaces between a-Si and metal materials, the excitation of surface-plasmon polaritons leads to obvious absorption enhancements in a wide near-IR range for different ridge shapes and periods. The highest enhancement factor of the cell external quantum efficiency is estimated to be 3.32. The optimized structure can achieve an increase of 17.12% in the cell efficiency. (C) 2009 Optical Society of America
Resumo:
A new series of film-forming, low-bandgap chromophores (1a,b and 2a,b) were rationally designed with aid of a computational study., and then synthesized and characterized. To realize absorption and emission above the 1000 nm wavelength, the molecular design focuses on lowering the LUMO level by fusing common heterocyclic units into a large conjugated core that acts an electron acceptor and increasing the charge transfer by attaching the multiple electron-donating groups at the appropriate positions of the acceptor core. The chromophores have bandgap levels of 1.27-0.71 eV, and accordingly absorb at 746-1003 nm and emit at 1035-1290 nm in solution. By design, the relatively high molecular weight (up to 2400 g mol(-1)) and non-coplanar structure allow these near-infrared (NIR) chromophores to be readily spin-coated as uniform thin films and doped with other organic semiconductors for potential device applications. Doping with [6,6]-phenyl-C-61 butyric acid methyl ester leads to a red shift in the absorption on]), for la and 2a. An interesting NIR electrochromism was found for 2a, with absorption being turned on at 1034 nm when electrochemically switched (at 1000 mV) from its neutral state to a radical cation state. Furthermore, a large Stokes shift (256-318 nm) is also unique for this multidonor-acceptor type of chromophore.
Resumo:
Peel test measurements and inverse analysis to determine the interfacial mechanical parameters for the metal film/ceramic system are performed, considering that there exist an epoxy interface layer between film and ceramic. In the present investigation, Al films with a series of thicknesses between 20 and 250 mu m and three peel angles of 90, 135 and 180 degrees are considered. A finite element model with the cohesive zone elements is used to simulate the peel test process. The finite element results are taken as the training data of a neural network in the inverse analysis. The interfacial cohesive energy and the separation strength can be determined based on the inverse analysis and peel experimental result. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A preliminary experiment was carried out to validate the feasibility of the method of impact by a front-end-coated bullet to evaluate the interface adhesion between film and substrate. The theoretical description of the initiation, propagation and evolution of the stress pulse during impact was generalized and formulized. The effects of the crucial parameters on the interface stress were further investigated with FEM. The results found the promising prospect of the application of such a method and provided useful guidance for experimental design.
Resumo:
The optical constants of two cyanine dye films that we prepared were measured with a RAP-1-type (RAP is rotating analyzer and polarizer) spectroscopic ellipsometer. Toward making a simplified model for the wafers of a recordable compact disk (CD-R), we give their optimization designs developed with the cyanine dye films. in addition, the dynamic storage performances of two sample disks were tested by our dynamic storage testing system. Measurement results of the sample disks were obtained to test and verify our film designs. (C) 2000 Optical Society of America. OCIS codes: 160.4890, 160.4760, 210.4810.
Resumo:
The refractive indices of crystalline phase-change films are usually obtained by thermal-induced crystallization. However, this is not accurate, because the crystallization of phase-change film in rewritable optical disks is laser induced. In this study, we use the initializer to crystallize the phase-change films. The dependence of the refractive index n and the extinction coefficient k of the phase-change films on the initialization conditions are studied. Remarkable changes of the refractive indices (especially k) are found when the initialization laser power density is 6.63 mW/mum(2) and the initialization velocity is 4.0 m/s. At the same time, the structure changes of the phase-change films are also studied. This dependence is explained by the structure change of the films. These results are significant in improving the accuracy of optical design and the thermal simulation of phase-change optical disks, as well as in the study of phase-change optical disks at shorter wavelengths. (C) 2003 Society of Photo-Optical Instrumentation Engineers.