14 resultados para exercise physiology
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.
Resumo:
Algal size can affect the rate of metabolism and of growth. Different sized colonies of Nostoc sphaeroides were used with the aim of determining the effects of colony size on photosynthetic physiology and growth. Small colonies showed higher maximum photosynthetic rates per unit chlorophyll, higher light saturation point, and higher photosynthetic efficiency (a) than large colonies. Furthermore, small colonies had a higher affinity for DIC and higher DIC-saturated photosynthetic rates. In addition, small colonies showed higher photosynthetic rates from 5-45degreesC than large colonies. There was a greater decrease in Fv/Fm after exposure to high irradiance and less recovery in darkness for large colonies than for small colonies. Relative growth rate decreased with increasing colony size. Small colonies had less chl a and mass per unit surface area. The results indicate that small colonies can harvest light and acquire DIC more efficiently and have higher maximum photosynthetic rates and growth rates than large colonies.
Resumo:
A major problem which is envisaged in the course of man-made climate change is sea-level rise. The global aspect of the thermal expansion of the sea water likely is reasonably well simulated by present day climate models; the variation of sea level, due to variations of the regional atmospheric forcing and of the large-scale oceanic circulation, is not adequately simulated by a global climate model because of insufficient spatial resolution. A method to infer the coastal aspects of sea level change is to use a statistical ''downscaling'' strategy: a linear statistical model is built upon a multi-year data set of local sea level data and of large-scale oceanic and/or atmospheric data such as sea-surface temperature or sea-level air-pressure. We apply this idea to sea level along the Japanese coast. The sea level is related to regional and North Pacific sea-surface temperature and sea-level air pressure. Two relevant processes are identified. One process is the local wind set-up of water due to regional low-frequency wind anomalies; the other is a planetary scale atmosphere-ocean interaction which takes place in the eastern North Pacific.