404 resultados para electron beam irradiation

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An internal shrinkage of nanocavity in silicon was in situ observed under irradiation of energetic electron on electron transmission microscopy. Because there is no addition of any external materials to cavity site, a predicted nanosize effect on the shrinkage was observed. At the same time, because there is no ion cascade effect as encountered in the previous ion irradiation-induced nanocavity shrinkage experiment, the electron irradiation-induced instability of nanocavity also provides a further more convincing evidence to demonstrate the predicted irradiation-induced athermal activation effect. (c) 2006 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Stimuli-sensitive or intelligent hydrogels have been investigated for many biomedical and pharmaceutical applications. Those hydrogels with dual sensitivity will have more extensive potential applications. The aim of the work presented was to prepare a series of thermo- and pH-sensitive hydrogels based on poly(vinylmethyl ether) (PVME) and carboxymethylchitosan (CMCS). The hydrogels were crosslinked using electron beam irradiation (EB) or using glutaraldehyde (GA) as a crosslinker at room temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(propylene carbonate) (PPC) showed predominantly degradation under electron-beam irradiation, accompanied by deterioration of its mechanical performance due to sharp decrease of the molecular weight. Crosslinked PPC was prepared by addition of polyfunctional monomer (PFM) to enhance the mechanical performance of PPC. When 8 wt% of PFM like triallyl isocyanurate (TAIL) was added, crosslinked PPC with a gel fraction of 60.7% was prepared at 50 kGy irradiation dose, which showed a tensile strength at 20 degrees C of 45.5 MPa, whereas it was only 38.5 MPa for pure PPC. The onset degradation temperature (T-i) and glass transition temperature (T-g) of this crosslinked PPC was 246 degrees C and 45 degrees C, respectively, a significant increase related to pure PPC of 211 degrees C and 36 C. Therefore, thermal and mechanical performances of PPC could be improved via electron-beam irradiation in the presence of suitable PFM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface rapid solidification microstructures of AISI 321 austenitic stainless steel and 2024 aluminum alloy have been investigated by electron beam remelting process and optical microscopy observation. It is indicated that the morphologies of the melted layer of both stainless steel and aluminum alloy change dramatically compared to the original materials. Also, the microstructures were greatly refined after the electron beam irradiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Second-harmonic generation was observed in Ge(20)AS(25)S(55) chalcogenide glass irradiated by an electron beam. The second-harmonic intensity increased with increasing electron-beam current and accelerating voltage. The second-harmonic generation in Ge20As25S55 glass was caused by the space-charge electrostatic field that was generated by irradiation of an electron beam. Second-order nonlinearity chi ((2)) as great as 0.8 pm/V was obtained. The results of measurements of thermally stimulated depolarization current indicated that the glass was poled in the thin layers of its surface (several micrometers) and that the nonlinearity was stable. (C) 2001 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a novel contactless and nondestructive method called the surface electron beam induced voltage (SEBIV) method for characterizing semiconductor materials and devices. The SEBIV method is based on the detection of the surface potential induced by electron beams of scanning electron microscopy (SEM). The core part of the SEBIV detection set-up is a circular metal detector placed above the sample surface. The capacitance between the circular detector and whole surface of the sample is estimated to be about 0.64 pf It is large enough for the detection of the induced surface potential. The irradiation mode of electron beam (e-beam) influences the signal generation. When the e-beam irradiates on the surface of semiconductors continuously, a differential signal is obtained. The real distribution of surface potentials can be obtained when a pulsed e-beam with a fixed frequency is used for irradiation and a lock-in amplifier is employed for detection. The polarity of induced potential depends on the structure of potential barriers and surface states of samples. The contrast of SEBIV images in SEM changes with irradiation time and e-beam intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of electron beam surface hardening treatment on the microstructure and hardness of AISI D3 tool steel have been investigated in this paper. The results showed that the microstructure of the hardened layer consisted of martensite, a dispersion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron beam surface remelting has been carried out on AISI D2 cold-worked die steel. The microstructure and hardening behavior of the electron beam surface remelted AISI D2 cold-worked die steel have been studied by means of optical microscopy and Vickers hardness testing. It was found that AISI D2 steel can be successfully surface hardened by electron beam surface remelting. This surface hardening effect can be attributed to microstructural refinement following electron beam surface remelting. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thickness and component distributions of large-area thin films are an issue of international concern in the field of material processing. The present work employs experiments and direct simulation Monte Carlo (DSMC) method to investigate three-dimensional low-density, non-equilibrium jets of yttrium and titanium vapor atoms in an electron-beams physical vapor deposition (EBPVD) system furnished with two or three electron-beams, and obtains their deposition thickness and component distributions onto 4-inch and 6-inch mono-crystal silicon wafers. The DSMC results are found in excellent agreement with our measurements, such as evaporation rates of yttrium and titanium measured in-situ by quartz crystal resonators, deposited film thickness distribution measured by Rutherford backscattering spectrometer (RBS) and surface profilometer and deposited film molar ratio distribution measured by RBS and inductively coupled plasma atomic emission spectrometer (ICP-AES). This can be taken as an indication that a combination of DSMC method with elaborate measurements may be satisfactory for predicting and designing accurately the transport process of EBPVD at the atomic level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2, films were deposited by electron-beam evaporation with the oxygen partial pressure varying from 3 X 10(-3) Pa to I I X 10(-3) Pa. The phase structure of the samples was characterized by x-ray diffraction (XRD). The thermal absorption of the films was measured by the surface thermal lensing technique. A spectrophotometer was employed to measure the refractive indices of the samples. The laser-induced damage threshold (LIDT) was assessed using a 1064, nm Nd: yttritium-aluminium-garnet pulsed laser at pulse width of 12 ns. The influence of oxygen partial pressure on the microstructure and LIDT of ZrO2 films was investigated. XRD data revealed that the films changed from polycrystalline to amorphous as the oxygen partial pressure increased. The variation of refractive index at 550 nm wavelength indicated that the packing density of the films decreased gradually with increasing oxygen partial pressure. The absorptance of the samples decreased monotonically from 125.2 to 84.5 ppm with increasing oxygen partial pressure. The damage threshold, values increased from 18.5 to 26.7 J/cm(2) for oxygen partial pressures varying from 3 X 10(-3) Pa to 9 X 10(-3) Pa, but decreased to 17.3 J/cm(2) in the case of I I X 10(-3) Pa. (C) 2005 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZrO2 thin films were deposited bill using an electron beam evaporation technique on three kinds of lithium triborate (LiB3O5 or LBO) substrates with the surfaces at specified crystalline orientations. The influences of the LBO structure on the structural and optical properties of ZrO2 thin films are studied by spectrophotometer and x-ray diffraction. The results indicate that the substrate structure has obvious effects on the structural end optical properties of the film: namely. the ZrO2 thin film deposited on the X-LBO, Y-LBO and Z-LBO orients to m(-212), m(021) and o(130) directions. It is also found that the ZrO2 thin film with m(021) has the highest refractive index and the least lattice misfit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prepare HfO2 thin films by electron beam evaporation technology. The samples are annealed in air after deposition. With increasing annealing temperature, it is found that the absorption of the samples decreases firstly and then increases. Also, the laser-induced damage threshold (LIDT) increases firstly and then decreases. When annealing temperature is 473K, the sample has the highest LIDT of 2.17J/cm(2), and the lowest absorption of 18 ppm. By investigating the optical and structural characteristics and their relations to LIDT, it is shown that the principal factor dominating the LIDT is absorption.