27 resultados para effective potential
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Covering the solid lattice with a finite-element mesh produces a coarse-grained system of mesh nodes as pseudoatoms interacting through an effective potential energy that depends implicitly on the thermodynamic state. Use of the pseudoatomic Hamiltonian in a Monte Carlo simulation of the two-dimensional Lennard-Jones crystal yields equilibrium thermomechanical properties (e.g., isotropic stress) in excellent agreement with ``exact'' fully atomistic results.
Resumo:
In underdense plasmas, the transverse ponderomotive force of an intense laser beam with Gaussian transverse profile expels electrons radially, and it can lead to an electron cavitation. An improved cavitation model with charge conservation constraint is applied to the determination of the width of the electron cavity. The envelope equation for laser spot size derived by using source-dependent expansion method is extended to including the electron cavity. The condition for self-guiding is given and illuminated by an effective potential for the laser spot size. The effects of the laser power, plasma density and energy dissipation on the self-guiding condition are discussed.
Resumo:
We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.
Resumo:
We have studied the electronic structure of vertically assembled quantum discs in a magnetic field with varying orientation using the effective mass approximation. We calculate the four energy levels of single-electron quantum discs and the two lowest energy levels of two-electron quantum discs in a magnetic field with varying orientation. The change of the magnetic field as an effective potential strongly modifies the electronic structure, leading to splittings of the levels and anticrossings between the levels. The calculated results also demonstrate the switching between the ground states with the total spin S = 0 and 1. The switching induces a qubit controlled by varying the orientation of the magnetic field.
Resumo:
Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.
Resumo:
We have studied the single-electron and two-electron vertically-assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six criergy levels of single-electron quantum disks and the two lowest energy levels of two-electron quantum disks in an axial magnetic field. The change of the magnetic field as an effective potential strongly modifies the electronic structures. leading to splittings and crossings between levels The results demonstrate the switching between the around states with the total spins S = 0 and S = 1. The switching results in a qubit allowed to fabricate by current growth techniques.
Resumo:
The electronic states and magnetotransport properties of quantum waveguides (QW's) in the presence of nonuniform magnetic fields perpendicular to the QW plane are investigated theoretically. It is found that the magnetoconductance of those structures as a function of Fermi energy exhibits stepwise variation or square-wave-like oscillations, depending on the specific distributions (both in magnitude and direction) of nonuniform magnetic fields in QW's. We have investigated the dual magnetic strip structures and three magnetic strip structures. The character of the magnetotransport is closely related to the effective magnetic potential and the energy-dispersion spectrum of electron in the structures. It is found that dispersion relations seem to be combined by different sets of dispersion curves that belong to different individual magnetic subwaveguides. The magnetic effective potential leads to the coupling of states and the substantial distortion of the original dispersion curves at the interfaces in which the abrupt change of magnetic fields appears. Magnetic scattering states are created. Only in some three magnetic strip structures, these scattering states produce the dispersion relations with oscillation structures superimposed on the bulk Landau levels. It is the oscillatory behavior in dispersions that leads to the occurrence of square-wave-like modulations in conductance.
Resumo:
The exciton states in isolated and semi-isolated quantum wires are studied. It is found that the image charges have a large effect on the effective Coulomb potential in wires. For the isolated wire the effective potential approaches the Coulomb potential in vacuum at large z distance. For the semi-isolated wire the effective potential is intermediate between the Coulomb potential in vacuum and the screened Coulomb potential at large distance. The exciton binding energy in the isolated wire is about ten times larger than that in the quantum well, and that in the semi-isolated wire is also intermediate between those in the isolated wire and in the quantum well. When the lateral width increases the binding energy decreases further, and approaches that in the quantum well. The real valence-band structure is taken into account, the exciton wave functions of the ground state in the zero-order approximation are given, and the reduced mass is calculated. The effect of the coupling between the ground and excited states are considered by the degenerate perturbation method, and it is found the coupling effect is small compared to the binding energy.
Resumo:
In the framework of the finite temperature Brueckner-Hartree-Fock approach including the contribution of the microscopic three-body force, the single nuclear potential and the nucleon effective mass in hot nuclear matter at various temperatures and densities have been calculated by using the hole-line expansion for mass operator, and the effects of the three-body forces and the ground state correlations on the single nucleon potential have been investigated. It is shown that both the ground state correlations and the three-body force affect considerably the density and temperature dependence of the single nucleon potential. The rearrangement correction in the single nucleon potential is repulsive and it reduces remarkably the attraction of the single nucleon potential in the low-momentum region. The rearrangement contribution due to the ground state correlations becomes smaller as the temperature rises up and becomes larger as the density increases. The effect of the three-body force on the ground state correlations is to reduce the contribution of rearrangement. At high densities, the single nucleon potential containing both the rearrangement correction and the contribution of the three-body force becomes more repulsive as the temperature increases.
Resumo:
The anadromous Chinese sturgeon (Acipenser sinensis), mainly endemic to the Yangtze River in China, is an endangered fish species. The natural population has declined since the Gezhouba Dam blocked its migratory route to the spawning grounds in 1981. In the near future, the completion of the Three Gorges Dam, the world's largest hydroelectric project, may further impact this species by altering the water flow of the Yangtze River. Little is currently known about the population genetic structure of the Chinese sturgeon. In this study, DNA sequence data were determined from the control region (D-loop) of the mitochondrial genome of adult sturgeons (n = 106) that were collected between 1995-2000. The molecular data were used to investigate genetic variation, effective female population size and population history of the Chinese sturgeon in the Yangtze River. Our results indicate that the reduction in abundance did not change genetic variation of the Chinese sturgeon, and that the population underwent an expansion in the past. AMOVA analysis indicated that 98.7% of the genetic variability occurred within each year's spawning populations, the year of collection had little influence on the diversity of annual temporary samples. The relative large effective female population size (N-ef) indicates that good potential exists for the recovery of this species in the future. Strikingly, the ratio of N-ef to the census female population size (N-f) is unusually high (0.77-0.93). This may be the result of a current bottleneck in the population of the Chinese sturgeon that is likely caused by human intervention.
Resumo:
Studies have attributed several functions to the Eaf family, including tumor suppression and eye development. Given the potential association between cancer and development, we set forth to explore Eaf1 and Eaf2/U19 activity in vertebrate embryogenesis, using zebrafish. In situ hybridization revealed similar eaf1 and eaf2/u19 expression patterns. Morpholino-mediated knockdown of either eaf1 or eaf2/u19 expression produced similar morphological changes that could be reversed by ectopic expression of target or reciprocal-target mRNA. However, combination of Eaf1 and Eaf2/U19 (Eafs)-morpholinos increased the severity of defects, suggesting that Eaf1 and Eaf2/U19 only share some functional redundancy. The Eafs knockdown phenotype resembled that of embryos with defects in convergence and extension movements. Indeed, knockdown caused expression pattern changes for convergence and extension movement markers, whereas cell tracing experiments using kaeda mRNA showed a correlation between Eafs knockdown and cell migration defects. Cardiac and pancreatic differentiation markers revealed that Eafs knockdown also disrupted midline convergence of heart and pancreatic organ precursors. Noncanonical Wnt signaling plays a key role in both convergence and extension movements and midline convergence of organ precursors. We found that Eaf1 and Eaf2/U19 maintained expression levels of wnt11 and wnt5. Moreover, wnt11 or wnt5 mRNA partially rescued the convergence and extension movement defects occurring in eafs morphants. Wnt11 and Wnt5 converge on rhoA, so not surprisingly, rhoA mRNA more effectively rescued defects than either wnt11 or wnt5 mRNA alone. However, the ectopic expression of wnt11 and wnt5 did not affect eaf1 and eaf2/u19 expression. These data indicate that eaf1 and eaf2/u19 act upstream of noncanonical Wnt signaling to mediate convergence and extension movements.
Resumo:
The interface dipole and its role in the effective work function (EWF) modulation by Al incorporation are investigated. Our study shows that the interface dipole located at the high-k/SiO2 interface causes an electrostatic potential difference across the metal/high-k interface, which significantly shifts the band alignment between the metal and high-k, consequently modulating the EWF. The electrochemical potential equalization and electrostatic potential methods are used to evaluate the interface dipole and its contribution. The calculated EWF modulation agrees with experimental data and can provide insight to the control of EWF in future pMOS technology.
Resumo:
In the framework of effective-mass envelope function theory, including the effect of Rashba spin-orbit coupling, the binding energy E-b and spin-orbit split energy Gamma of the ground state of a hydrogenic donor impurity in AlGaN/GaN triangle-shaped potential heterointerface are calculated. We find that with the electric field of the heterojunction increasing, (1) the effective width of quantum well (W) over bar decreases and (2) the binding energy increases monotonously, and in the mean time, (3) the spin-orbit split energy Gamma decreases drastically. (4) The maximum of Gamma is 1.22 meV when the electric field of heterointerface is 1 MV/cm.
Resumo:
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GIDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5 s), a low detection limit (0.1 mu M), a wide and useful linear range (0.5-400 mu M), high sensitivity (137.3 +/- 15.7) mu A mM(-1) cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.