17 resultados para diagonal constrained decorrelation
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A hybrid method of continuum and particle dynamics is developed for micro- and nano-fluidics, where fluids are described by a molecular dynamics (MD) in one domain and by the Navier-Stokes (NS) equations in another domain. In order to ensure the continuity of momentum flux, the continuum and molecular dynamics in the overlap domain are coupled through a constrained particle dynamics. The constrained particle dynamics is constructed with a virtual damping force and a virtual added mass force. The sudden-start Couette flows with either non-slip or slip boundary condition are used to test the hybrid method. It is shown that the results obtained are quantitatively in agreement with the analytical solutions under the non-slip boundary conditions and the full MD simulations under the slip boundary conditions.
Resumo:
A new high-order finite volume method based on local reconstruction is presented in this paper. The method, so-called the multi-moment constrained finite volume (MCV) method, uses the point values defined within single cell at equally spaced points as the model variables (or unknowns). The time evolution equations used to update the unknowns are derived from a set of constraint conditions imposed on multi kinds of moments, i.e. the cell-averaged value and the point-wise value of the state variable and its derivatives. The finite volume constraint on the cell-average guarantees the numerical conservativeness of the method. Most constraint conditions are imposed on the cell boundaries, where the numerical flux and its derivatives are solved as general Riemann problems. A multi-moment constrained Lagrange interpolation reconstruction for the demanded order of accuracy is constructed over single cell and converts the evolution equations of the moments to those of the unknowns. The presented method provides a general framework to construct efficient schemes of high orders. The basic formulations for hyperbolic conservation laws in 1- and 2D structured grids are detailed with the numerical results of widely used benchmark tests. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
A constrained high-order statistical algorithm is proposed to blindly deconvolute the measured spectral data and estimate the response function of the instruments simultaneously. In this algorithm, no prior-knowledge is necessary except a proper length of the unit-impulse response. This length can be easily set to be the width of the narrowest spectral line by observing the measured data. The feasibility of this method has been demonstrated experimentally by the measured Raman and absorption spectral data.
Resumo:
In this paper, a new method for designing three-zone optical pupil filter is presented. The phase-only optical pupil filter and the amplitude-only optical pupil filters were designed. The first kind of pupil for optical data storage can increase the transverse resolution. The second kind of pupil filter can increase the axial and transverse resolution at the same time, which is applicable in three-dimension imaging in confocal microscopy. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
It is known that the diagonal-Schur complements of strictly diagonally dominant matrices are strictly diagonally dominant matrices [J.Z. Liu, Y.Q. Huang, Some properties on Schur complements of H-matrices and diagonally dominant matrices, Linear Algebra Appl. 389 (2004) 365-380], and the same is true for nonsingular H-matrices [J.Z. Liu, J.C. Li, Z.T. Huang, X. Kong, Some properties of Schur complements and diagonal-Schur complements of diagonally dominant matrices, Linear Algebra Appl. 428 (2008) 1009-1030]. In this paper, we research the properties on diagonal-Schur complements of block diagonally dominant matrices and prove that the diagonal-Schur complements of block strictly diagonally dominant matrices are block strictly diagonally dominant matrices, and the same holds for generalized block strictly diagonally dominant matrices. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
The optimal entanglement manipulation for a single copy of mixed states of two qubits is to transform it to a Bell diagonal state. In this paper we derive an explicit form of the local operation that can realize such a transformation. The result obtained is universal for arbitrary entangled two-qubit states and it discloses that the corresponding local filter is not unique for density matrices with rank n = 2 and can be exclusively determined for that with n = 3 and 4. As illustrations, a four-parameter family of mixed states are explored, the local filter as well as the transformation probability are given explicitly, which verify the validity of the general result.
Resumo:
Diagonal self-assembled InAs quantum wire (QWR) arrays with the stacked InAs/In0.52Al0.48As structure are grown on InP substrates, which are (001)-oriented and misoriented by 6degrees towards the [100] direction. Both the molecular beam epitaxy (MBE) and migration enhanced epitaxy (MEE) techniques are employed. Transmission electron microscopy reveals that whether a diagonal InAs QWR array of the stacked InAs/InAlAs is symmetrical about the growth direction or not depends on the growth method as well as substrate orientation. Asymmetry in the diagonal MEE-grown InAs QWR array can be ascribed to the influence of surface reconstruction on upward migration of adatoms during the self-assembly of the InAs quantum wires.
Resumo:
A novel accurate numerical model for shallow water equations on sphere have been developed by implementing the high order multi-moment constrained finite volume (MCV) method on the icosahedral geodesic grid. High order reconstructions are conducted cell-wisely by making use of the point values as the unknowns distributed within each triangular cell element. The time evolution equations to update the unknowns are derived from a set of constrained conditions for two types of moments, i.e. the point values on the cell boundary edges and the cell-integrated average. The numerical conservation is rigorously guaranteed. in the present model, all unknowns or computational variables are point values and no numerical quadrature is involved, which particularly benefits the computational accuracy and efficiency in handling the spherical geometry, such as coordinate transformation and curved surface. Numerical formulations of third and fourth order accuracy are presented in detail. The proposed numerical model has been validated by widely used benchmark tests and competitive results are obtained. The present numerical framework provides a promising and practical base for further development of atmospheric and oceanic general circulation models. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Natl Chiao Tung Univ, Dept Comp Sci