3 resultados para diagonal constrained decorrelation
em CaltechTHESIS
Resumo:
This thesis focuses mainly on linear algebraic aspects of combinatorics. Let N_t(H) be an incidence matrix with edges versus all subhypergraphs of a complete hypergraph that are isomorphic to H. Richard M. Wilson and the author find the general formula for the Smith normal form or diagonal form of N_t(H) for all simple graphs H and for a very general class of t-uniform hypergraphs H.
As a continuation, the author determines the formula for diagonal forms of integer matrices obtained from other combinatorial structures, including incidence matrices for subgraphs of a complete bipartite graph and inclusion matrices for multisets.
One major application of diagonal forms is in zero-sum Ramsey theory. For instance, Caro's results in zero-sum Ramsey numbers for graphs and Caro and Yuster's results in zero-sum bipartite Ramsey numbers can be reproduced. These results are further generalized to t-uniform hypergraphs. Other applications include signed bipartite graph designs.
Research results on some other problems are also included in this thesis, such as a Ramsey-type problem on equipartitions, Hartman's conjecture on large sets of designs and a matroid theory problem proposed by Welsh.
Resumo:
In this thesis, we provide a statistical theory for the vibrational pooling and fluorescence time dependence observed in infrared laser excitation of CO on an NaCl surface. The pooling is seen in experiment and in computer simulations. In the theory, we assume a rapid equilibration of the quanta in the substrate and minimize the free energy subject to the constraint at any time t of a fixed number of vibrational quanta N(t). At low incident intensity, the distribution is limited to one- quantum exchanges with the solid and so the Debye frequency of the solid plays a key role in limiting the range of this one-quantum domain. The resulting inverted vibrational equilibrium population depends only on fundamental parameters of the oscillator (ωe and ωeχe) and the surface (ωD and T). Possible applications and relation to the Treanor gas phase treatment are discussed. Unlike the solid phase system, the gas phase system has no Debye-constraining maximum. We discuss the possible distributions for arbitrary N-conserving diatom-surface pairs, and include application to H:Si(111) as an example.
Computations are presented to describe and analyze the high levels of infrared laser-induced vibrational excitation of a monolayer of absorbed 13CO on a NaCl(100) surface. The calculations confirm that, for situations where the Debye frequency limited n domain restriction approximately holds, the vibrational state population deviates from a Boltzmann population linearly in n. Nonetheless, the full kinetic calculation is necessary to capture the result in detail.
We discuss the one-to-one relationship between N and γ and the examine the state space of the new distribution function for varied γ. We derive the Free Energy, F = NγkT − kTln(∑Pn), and effective chemical potential, μn ≈ γkT, for the vibrational pool. We also find the anti correlation of neighbor vibrations leads to an emergent correlation that appears to extend further than nearest neighbor.
Resumo:
The study of codes, classically motivated by the need to communicate information reliably in the presence of error, has found new life in fields as diverse as network communication, distributed storage of data, and even has connections to the design of linear measurements used in compressive sensing. But in all contexts, a code typically involves exploiting the algebraic or geometric structure underlying an application. In this thesis, we examine several problems in coding theory, and try to gain some insight into the algebraic structure behind them.
The first is the study of the entropy region - the space of all possible vectors of joint entropies which can arise from a set of discrete random variables. Understanding this region is essentially the key to optimizing network codes for a given network. To this end, we employ a group-theoretic method of constructing random variables producing so-called "group-characterizable" entropy vectors, which are capable of approximating any point in the entropy region. We show how small groups can be used to produce entropy vectors which violate the Ingleton inequality, a fundamental bound on entropy vectors arising from the random variables involved in linear network codes. We discuss the suitability of these groups to design codes for networks which could potentially outperform linear coding.
The second topic we discuss is the design of frames with low coherence, closely related to finding spherical codes in which the codewords are unit vectors spaced out around the unit sphere so as to minimize the magnitudes of their mutual inner products. We show how to build frames by selecting a cleverly chosen set of representations of a finite group to produce a "group code" as described by Slepian decades ago. We go on to reinterpret our method as selecting a subset of rows of a group Fourier matrix, allowing us to study and bound our frames' coherences using character theory. We discuss the usefulness of our frames in sparse signal recovery using linear measurements.
The final problem we investigate is that of coding with constraints, most recently motivated by the demand for ways to encode large amounts of data using error-correcting codes so that any small loss can be recovered from a small set of surviving data. Most often, this involves using a systematic linear error-correcting code in which each parity symbol is constrained to be a function of some subset of the message symbols. We derive bounds on the minimum distance of such a code based on its constraints, and characterize when these bounds can be achieved using subcodes of Reed-Solomon codes.