11 resultados para diabetic autonomic neuropathy
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Leber hereditary optic neuropathy (LHON) is the most extensively studied mitochondrial disease, with the majority of the cases being caused by one of three primary mitochondrial DNA (mtDNA) mutations. Incomplete disease penetrance and gender bias are two
Resumo:
The primary mutation m.3460G > A occurs with a very low frequency (similar to 1%) in Chinese patients with Leber hereditary optic neuropathy (LHON). Up to now, there is no comprehensive study of Chinese patients harboring this mutation. We characterized six unrelated probands with m.3460G > A in this study, which were identified from 1,626 patients with LHON or suspected with LHON. The overall penetrance of LHON (25.6% [10/39]) in four pedigrees with m.3460G > A was substantially lower than those families with m.11778G > A (33.3% [619/1859]) as reported in our previous study. Intriguingly, family Le688 with a heteroplasmic m.3460G > A presented a lower penetrance (12.5%) than the other three families with a homoplasmic mutation. There is an elevated gender bias (affected male to affected female = 4:1) in the four families with m.3460G > A compared to those LHON families with m.11778G > A (2.4:1). Complete mtDNA sequencing indicated that the six matrilines belonged to haplogroups B4d1, F2, A5b, M12a, D4b2b, and D4b2, respectively. We did not identify any potential secondary mutation(s) that will affect or be associated with the penetrance of LHON in the six probands by using an evolutionary analysis and protein secondary-structure prediction. Taken together, our results suggested that the m.3460G > A mutation occurred multiple times in Chinese LHON patients. The heteroplasmic status of mutation m.3460G > A might influence the penetrance of LHON in family Le688.
Resumo:
Mitochondrial DNA background has been shown to be involved in the penetrance of Leber's hereditary optic neuropathy (LHON) in western Eurasian populations. To analyze mtDNA haplogroup distribution pattern in Han Chinese patients with LHON and G11778A muta
Resumo:
Co-occurrence of double pathogenic mtDNA mutations with different claimed pathological roles in one mtDNA is infrequent. It is tentative to believe that each of these pathogenic mutations would have its own deleterious effect. Here we reported one three-g
Resumo:
Leber hereditary optic neuropathy (LHON) was the first disease to be linked to the presence of a mitochondrial DNA (mtDNA) mutation. Nowadays over 95% of LHON cases are known to be caused by one of three primary mutations (m.11778G>A, m.14484T>C, and m.34
Resumo:
Metabonomics, the study of metabolites and their roles in various disease states, is a novel methodology arising from the post-genomics era. This methodology has been applied in many fields, including work in cardiovascular research and drug toxicology. In this study, metabonomics method was employed to the diagnosis of Type 2 diabetes mellitus (DM2) based on serum lipid metabolites. The results suggested that serum fatty acid profiles determined by capillary gas chromatography combined with pattern recognition analysis of the data might provide an effective approach to the discrimination of Type 2 diabetic patients from healthy controls. And the applications of pattern recognition methods have improved the sensitivity and specificity greatly. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Increased oxidative stress induced by hyperglycemia may contribute to the pathogenesis of diabetic complications. Urinary 8-hydroxydeoxyguanosine (8-OHdG) has been reported to serve as a sensitive biomarker of oxidative DNA damage and also of oxidative stress. This article studied oxidative DNA damage in patients with diabetic nephropathy and in healthy control subjects by urinary 8-OHdG evaluations. Contents of 8-OHdG in urine were analyzed by capillary electrophoresis with end-column amperometric detection (CE-AD) after a single-step solid-phase extraction (SPE). Levels of urinary 8-OHdG in diabetic nephropathy patients with macroalbuminuria was significant higher than in control subjects (5.72 +/- 6.89 mumol/mol creatinine versus 2.33 +/- 2.83 mumol/mol creatinine, P = 0.018). A significant difference of 24 h urinary 8-OHdG excretions exists between the patients with macroalbuminuria and the patients with nonnoalbuminuria (19.2 +/- 16.8 mug/24 h versus 8.1 +/- 1.7 mug/24 h, P = 0.015). There was a positive correlation between urinary excretion of 8-OHdG and glycosylated hemoglobin (HbA(1)c) (r = 0.287, P = 0.022). A weak correlation exists between the levels of 8-OHdG and triglyceride (r = 0.230, P = 0.074). However, the urinary 8-OHdG contents are not correlated with blood pressure and total cholesterol. The increased excretion of urinary 8-OHdG is seen as indicating an increased systemic level of oxidative DNA damage in diabetic nephropathy patients. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Protein tyrosine phosphatase 1B (PTP1B) plays an important role as a negative regulator in insulin signaling pathways. PTP1B is an effective target for the treatment of type 2 diabetes mellitus. Four bromophenol derivatives from red algae Rhodomela confervoides, 2,2',3,3'-tetrabromo-4,4',5,5'-tetra-hydroxydiphenyl methane (1), 3-bormo-4,5-bis(2,3-dibromo-4,5-dihydroxybenzyl) pyrocatechol (2), bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (3) and 2,2',3-tribromo-3',4,4',5-tetrahydroxy-6'-ethyloxy-methyldiphenylmethane (4) showed significant inhibitory activity against PTP1B (IC50 were 2.4, 1.7, 1.5 and 0.84 mu mol/L, respectively) as potential therapeutical agents for the treatment of type 2 diabetes mellitus. The anti-hyperglycemic effects of the ethanol extracts from R. confervoides on streptozotocin-induced diabetes (STZ-diabetes) in male Wistar rats fed with high fat diet were investigated. The STZ-diabetic rats treated with medium-dose and high-dose alga extracts showed remarkable reductions in fasting blood glucose (FBG) as compared with the STZ-diabetic control. The results indicate that the in vivo anti-hyperglycemic activity of the R. confervoides extracts can be partially attributed to the inhibitory actions against PTP1B of the bromophenol derivatives and that may be of clinical importance in improving the management of type 2 diabetes mellitus.