148 resultados para ddc: 001
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Structural and optical properties were investigated for ZnO films grown on (100) and (001) gamma-LiAlO2 (LAO) substrates by pulsed laser deposition method. According XRD results, it is intuitionistic that (100) LAO is suitable for fabricating high quality ZnO film, while (001) LAO is unsuitable. The FWHM of XRD, stress in film and FWHM of UV PL spectra for ZnO films on (100) LAO show a decreasing with increasing substrate temperature from 300 to 600 degrees C. ZnO film fabricated at 600 degrees C has the greatest grain size, the smallest stress (0.47 Gpa) and PL FWHM value (similar to 85 meV). This means that the substrate temperature of 600 degrees C is optimum for ZnO film deposited on (100) LAO. Moreover, it was found that the UV PL spectra intensity of ZnO film is not only related to the grain size and stoichiometric, but also depends on the stress in the film.
Resumo:
Highly (001) orientation LiGaO2 layers have been successfully fabricated on (100) beta-Ga2O3 surface by vapor transport equilibration (VTE) technique. The temperature is very important for the WE treatment. At low temperature (800 degrees C), LiGaO(2)layers are textured. As the temperature was raised to 1100 C the layer becomes highly oriented in the [100] direction. It shows that the best temperature for WE treatment is 1100 degrees C. This technique is promising to fabricate small lattice mismatch composite substrate of LiGaO2 (001)//beta-Ga2O3 (100) for GaN films. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Crystalline beta-BBO layers have been successfully prepared on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates using vapor transport equilibration technique. The layers were characterized by X-ray diffraction, X-ray rocking curve and transmission spectra. The present results manifest that the VTE treatment time and powder ratio are important factors on the preparation of beta-BBO layers. beta-BBO layers with a highly (0 0 l) preferred orientation were obtained according to XRD profiles. The full width at half-maximum of the rocking curve for the layer is as low as about 1000 in., which shows the high crystallinity of the layer. These results reveal the possibility of fabricating beta-BBO (0 0 1) layers on (0 0 1)-oriented Sr2+-doped alpha-BBO substrates by VTE. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Submitted by zhangdi (zhangdi@red.semi.ac.cn) on 2009-04-13T11:45:31Z
Resumo:
A giant magnetocaloric effect was found in series of Mn1-xCoxAs films epitaxied on GaAs (001). The maximum magnetic entropy change caused by a magnetic field of 4 T is as large as 25 J/kg K around room temperature, which is about twice the value of pure MnAs film. The observed small thermal hysteresis is more suitable for practical application. Growing of layered Mn1-xCoxAs films with Co concentration changing gradually may draw layered active magnetic regenerator refrigerators closer to practical application. Our experimental result may provide the possibility for the combination of magnetocaloric effect and microelectronic circuitry.
Resumo:
We have investigated magnetic properties of laterally confined structures of epitaxial Fe films on GaAs (001). Fe films with different thicknesses were grown by molecular-beam epitaxy and patterned into regular arrays of rectangles with varying aspect ratios. In-plane magnetic anisotropy was observed in all of the patterned Fe films both at 15 and 300 K. We have demonstrated that the coercive fields can be tuned by varying the aspect ratios of the structures. The magnitudes of the corresponding anisotropy constants have been determined and the shape anisotropy constant is found to be enhanced as the aspect ratio is increased.
Resumo:
(110) oriented ZnO thin films were epitaxially prepared on (001) SrTiO3 single crystal substrates by a pulsed laser deposition method. The evolution of structure, surface morphology, and electrical conductivity of ZnO films was investigated on changing the growth temperature. Two domain configurations with 90 degrees rotation to each other in the film plane were found to exist to reduce the lattice mismatch between the films and substrates. In the measured temperature range between 80 K and 300 K, the electrical conductivity can be perfectly fitted by a formula of a (T) = sigma(0) + aT(b/2). implying that the electron-phonon scattering might have a significant contribution to the conductivity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Anisotropic exchange splitting (AES) is induced by the joint effects of the electron-hole exchange interaction and the symmetry reduction in quantum wells and quantum dots. A model has been developed to quantitatively obtain the electron-hole exchange energy and the hole-mixing energy of quantum wells and superlattices. In this model, the AES and the degree of polarization can both be obtained from the reflectance difference spectroscopy. Thus the electron-hole exchange energy and the hole-mixing energy can be completely separated and quantitatively deduced. By using this model, a (001)5 nm GaAs/7 nm Al0.3Ga0.7As superlattice sample subjected to [110] uniaxial strains has been investigated in detail. The n=1 heavy-hole (1H1E) exciton can be analyzed by this model. We find that the AES of quantum wells can be linearly tuned by the [110] uniaxial strains. The small uniaxial strains can only influence the hole-mixing interaction of quantum wells, but have almost no contribution to the electron-hole exchange interaction. (c) 2008 American Institute of Physics.
Resumo:
GaSb epilayers grown on GaAs(001) vicinal substrate misoriented towards (111) plane were studied using high-resolution x-ray diffraction (HRXRD). The results show that GaSb epilayers exhibit positive crystallographic tilt and the distribution of 60 degrees misfit dislocations (MDs) is imbalanced. The vicinal substrate also leads to the anisotropy of the mosaic structure, i.e. the lateral coherent lengths in [1 (1) over bar0] directions are larger than those in [110] directions. Furthermore, the full-width at half maximum (FWHM) of the off-axis peaks varies with the inclination angle, which is a result of different dislocation densities in the {111} glide planes.
Resumo:
The ZnO films were grown on Ag/Si(001) substrates by sputtering Ag and ZnO targets successively in a pure Ar ambient. A significant enhancement of ZnO ultraviolet emission and a reduction of its full width of half maximum have been observed while introducing a 100 nm Ag interlayer between ZnO film and Si substrate. Furthermore, a complete suppression of the defect related visible emission was also found for the ZnO/Ag/Si sample. This improved optical performance of ZnO is attributed to the resonant coupling between Ag surface plasmon and ultraviolet emission of ZnO. (c) 2007 American Institute of Physics.
Resumo:
We theoretically study the spatial behaviors of spin precessions modulated by an effective magnetic field in a two-dimensional electron system with spin-orbit interaction. Through analysis of interaction between the spin and the effective magnetic field, we find some laws of spin precession in the system, by which we explain some previous phenomena of spin precession, and predict a controllable electron spin polarization wave in [001]-grown quantum wells. The shape of the wave, like water wave, mostly are ellipse-like or circle-like, and the wavelength is anisotropic in the quantum wells with two unequal coupling strengths of the Rashba and Dresselhaus interactions, and is isotropic in the quantum wells with only one spin orbit interaction.
Resumo:
Fe films with the different thicknesses were grown on c(4x4) reconstructed GaAs (001) surfaces at low temperature by molecular-beam epitaxy. Well-ordered bcc structural Fe epitaxial films are confirmed by x-ray diffraction patterns and high-resolution cross-sectional transmission electron microscopy images. A large lattice expansion perpendicular to the surface in Fe film is observed. In-plane uniaxial magnetic anisotropy is determined by the difference between magnetizing energy along [110] and [110] directions, and the constant of interfacial uniaxial magnetic anisotropy is calculated to be 1.02x10(-4) J m(-2). We also find that magnetic anisotropy is not obviously influenced after in situ annealing, but in-plane strain is completely changed.
Resumo:
The well-width dependence of in-plane optical anisotropy (IPOA) in (001) GaAs/AlxGa1-xAs quantum wells induced by in-plane uniaxial strain and interface asymmetry has been studied comprehensively. Theoretical calculations show that the IPOA induced by in-plane uniaxial strain and interface asymmetry exhibits much different well-width dependence. The strain-induced IPOA is inversely proportional to the energy spacing between heavy- and light-hole subbands, so it increases with the well width. However, the interface-related IPOA is mainly determined by the probability that the heavy- and light-holes appear at the interfaces, so it decreases with the well width. Reflectance difference spectroscopy has been carried out to measure the IPOA of (001) GaAs/AlxGa1-xAs quantum wells with different well widths. Strain- and interface-induced IPOA have been distinguished by using a stress apparatus, and good agreement with the theoretical prediction is obtained. The anisotropic interface potential parameters are also determined. In addition, the energy shift between the interface- and strain-induced 1H1E reflectance difference (RD) structures, and the deviation of the 1L1E RD signal away from the prediction of the calculation model have been discussed.
Resumo:
GaSb and InSb epilayers grown on GaAs (001) vicinal substrates misoriented toward (111) plane were studied using high resolution x-ray diffraction. The results show that GaSb and InSb epilayers take on positive crystallographic tilt, and the asymmetric distribution of 60 degrees misfit dislocations in {111} glide planes have an effect on the tilt. In addition, the vicinal substrate influences the distribution of the threading dislocations in {111} glide planes, and the density of dislocation in the (111) plane is higher than in the ((1) over bar(1) over bar1) plane. A model was proposed to interpret the distribution of full width at half maximum, which can help us understand the formation and glide process of the dislocations. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3115450]