35 resultados para Weighted Lp Norm
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The seismic survey is the most effective prospecting geophysical method during exploration and development of oil/gas. The structure and the lithology of the geological body become increasingly complex now. So it must assure that the seismic section own upper resolution if we need accurately describe the targets. High signal/noise ratio is the precondition of high-resolution. For the sake of improving signal/noise ratio, we put forward four methods for eliminating random noise on the basis of detailed analysis of the technique for noise elimination using prediction filtering in f-x-y domain. The four methods are put forward for settling different problems, which are in the technique for noise elimination using prediction filtering in f-x-y domain. For weak noise and large filters, the response of the noise to the filter is little. For strong noise and short filters, the response of the noise to the filter is important. For the response of the noise, the predicting operators are inaccurate. The inaccurate operators result in incorrect results. So we put forward the method using prediction filtering by inversion in f-x-y domain. The method makes the assumption that the seismic signal comprises predictable proportion and unpredictable proportion. The transcendental information about predicting operator is introduced in the function. The method eliminates the response of the noise to filtering operator, and assures that the filtering operators are accurate. The filtering results are effectively improved by the method. When the dip of the stratum is very complex, we generally divide the data into rectangular patches in order to obtain the predicting operators using prediction filtering in f-x-y domain. These patches usually need to have significant overlap in order to get a good result. The overlap causes that the data is repeatedly used. It effectively increases the size of the data. The computational cost increases with the size of the data. The computational efficiency is depressed. The predicting operators, which are obtained by general prediction filtering in f-x-y domain, can not describe the change of the dip when the dip of the stratum is very complex. It causes that the filtering results are aliased. And each patch is an independent problem. In order to settle these problems, we put forward the method for eliminating noise using space varying prediction filtering in f-x-y domain. The predicting operators accordingly change with space varying in this method. Therefore it eliminates the false event in the result. The transcendental information about predicting operator is introduced into the function. To obtain the predicting operators of each patch is no longer independent problem, but related problem. Thus it avoids that the data is repeatedly used, and improves computational efficiency. The random noise that is eliminated by prediction filtering in f-x-y domain is Gaussian noise. The general method can't effectively eliminate non-Gaussian noise. The prediction filtering method using lp norm (especially p=l) can effectively eliminate non-Gaussian noise in f-x-y domain. The method is described in this paper. Considering the dip of stratum can be accurately obtained, we put forward the method for eliminating noise using prediction filtering under the restriction of the dip in f-x-y domain. The method can effectively increase computational efficiency and improve the result. Through calculating in the theoretic model and applying it to the field data, it is proved that the four methods in this paper can effectively solve these different problems in the general method. Their practicability is very better. And the effect is very obvious.
Resumo:
In this paper we introduce a weighted complex networks model to investigate and recognize structures of patterns. The regular treating in pattern recognition models is to describe each pattern as a high-dimensional vector which however is insufficient to express the structural information. Thus, a number of methods are developed to extract the structural information, such as different feature extraction algorithms used in pre-processing steps, or the local receptive fields in convolutional networks. In our model, each pattern is attributed to a weighted complex network, whose topology represents the structure of that pattern. Based upon the training samples, we get several prototypal complex networks which could stand for the general structural characteristics of patterns in different categories. We use these prototypal networks to recognize the unknown patterns. It is an attempt to use complex networks in pattern recognition, and our result shows the potential for real-world pattern recognition. A spatial parameter is introduced to get the optimal recognition accuracy, and it remains constant insensitive to the amount of training samples. We have discussed the interesting properties of the prototypal networks. An approximate linear relation is found between the strength and color of vertexes, in which we could compare the structural difference between each category. We have visualized these prototypal networks to show that their topology indeed represents the common characteristics of patterns. We have also shown that the asymmetric strength distribution in these prototypal networks brings high robustness for recognition. Our study may cast a light on understanding the mechanism of the biologic neuronal systems in object recognition as well.
Resumo:
The divergence of properties from one location to another within a soil mass is termed spatial variability, which traditionally includes three parameters the mean, the standard deviation, and the scale of fluctuation, in order to stochastically describe a soil property. Among them, determining the scale of fluctuation in the evaluation of spatial variability of soil profiles is not easy due to soil condition complexity. A simplified procedure is presented in the paper to determine the scale of fluctuation combined recurrence averaging and weighted linear regression. The alternative approach utilizes widely usable spreadsheet to solve the problem more directly and efficiently.
Resumo:
Among different phase unwrapping approaches, the weighted least-squares minimization methods are gaining attention. In these algorithms, weighting coefficient is generated from a quality map. The intrinsic drawbacks of existing quality maps constrain the application of these algorithms. They often fail to handle wrapped phase data contains error sources, such as phase discontinuities, noise and undersampling. In order to deal with those intractable wrapped phase data, a new weighted least-squares phase unwrapping algorithm based on derivative variance correlation map is proposed. In the algorithm, derivative variance correlation map, a novel quality map, can truly reflect wrapped phase quality, ensuring a more reliable unwrapped result. The definition of the derivative variance correlation map and the principle of the proposed algorithm are present in detail. The performance of the new algorithm has been tested by use of a simulated spherical surface wrapped data and an experimental interferometric synthetic aperture radar (IFSAR) wrapped data. Computer simulation and experimental results have verified that the proposed algorithm can work effectively even when a wrapped phase map contains intractable error sources. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
Aluminum nitride (AIN) thin films were deposited on Si (111) substrates by low pressure metalorganic chemical vapor deposition system. The effects of the V/III ratios on the film structure and surface morphology were systematically studied. The chemical states and vibration modes of AIN films were characterized by X-ray photoelectron spectroscopy and Fourier transform infrared spectrometer. The optical absorption property of the AIN films, characterized by ultraviolet-visible-near infrared spectrophotometer, exhibited a sharp absorption near the wavelength of 206 mm. The AIN (002) preferential orientation growth was obtained at the V/III ratio of 10,000 and the preferential growth mechanism is presented in this paper according to the thermodynamics and kinetics process of the AIN growth.
Resumo:
This paper presents an two weighted neural network approach to determine the delay time for a heating, ventilating and air-conditioning (HVAC) plan to respond to control actions. The two weighted neural network is a fully connected four-layer network. An acceleration technique was used to improve the General Delta Rule for the learning process. Experimental data for heating and cooling modes were used with both the two weighted neural network and a traditional mathematical method to determine the delay time. The results show that two weighted neural networks can be used effectively determining the delay time for AVAC systems.
Resumo:
Epitaxial growth of Zn-doped InGaAs on InP substrates has been carried out at 550degreesC by LP-MOCVD. Hole concentration as high as 6 x 10(19)cm(-3) has been achieved at the H-2 flow rate of 20 sccm through DEZn bubbler. The lattice constant of Zn-doped InGaAs was found to be dependent on the flow rate of DEZn, and the tensile strain mismatch increases with increasing H-2 flow rate of DEZn. The negative lattice mismatch of heavily Zn-dopped InGaAs may be due to, the small covalent bonding radius of zinc and the combination of butane from ethyl of DEZn,and TEGa. And the latter accelerates the pyrolysis of TEGa, which is the dominant mechanism in determining the negative mismatch of Zn-doped InGaAs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Effects of V/III ratio on heavily Si doped InGaAs and InP were studied using low pressure metalorganic chemical vapor deposition (LP-MOCVD) at a growth temperature of 550degreesC. In InGaAs, as the V/III ratio decreases from 256 to 64, the carrier concentration increases from 3.0 x 10(18) to 5.8 x 10(18) cm(-3), and the lattice mismatch of InGaAs to InP was observed to vary from -5.70 x10(-4) to 1.49 x 10(-3). In InP, when the V/III ratio decreases from 230 to 92, the same trend as that in Si doped InGaAs was observed that the carrier concentration increases from 9.2 x 10(18) to 1.3 x 10(19) cm(-3). The change of AsH3 was found to have stronger effect on Si incorporation in InGaAs at lower growth temperature than at higher growth temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In this paper, from the cognition science point of view, we constructed a neuron of multi-weighted neural network, and proposed a new method for iris recognition based on multi-weighted neuron. In this method, irises are trained as "cognition" one class by one class, and it doesn't influence the original recognition knowledge for samples of the new added class. The results of experiments show the correct rejection rate is 98.9%, the correct cognition rate and the error recognition rate are 95.71% and 3.5% respectively. The experimental results demonstrate that the correct rejection rate of the test samples excluded in the classes of training samples is very high. It proves the proposed method for iris recognition is effective.
Resumo:
In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.
Resumo:
Double weighted neural network; is a kind of new general used neural network, which, compared with BP and RBF network, may approximate the training samples with a move complicated geometric figure and possesses a even greater approximation. capability. we study structure approximate based on double weighted neural network and prove its rationality.
Resumo:
In this paper, we redefine the sample points set in the feature space from the point of view of weighted graph and propose a new covering model - Multi-Degree-of-Freedorn Neurons (MDFN). Base on this model, we describe a geometric learning algorithm with 3-degree-of-freedom neurons. It identifies the sample points secs topological character in the feature space, which is different from the traditional "separation" method. Experiment results demonstrates the general superiority of this algorithm over the traditional PCA+NN algorithm in terms of efficiency and accuracy.