34 resultados para Water retention capacity

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用离心机法,研究聚丙烯酸钠与聚丙烯酰胺2种高分子化合物在5种使用浓度(占干土质量0、0.01%、0.08%、0.2%与1%)的条件下对3种土壤(砂土、壤土、黏土)持水能力的影响。结果表明:3种土壤在0.01~1.5MPa水吸力时,持水能力随着2种高分子材料用量的增加而增加,砂土的作用效果较壤土、黏土更显著;2种高分子材料与土壤质量比控制在8/10000~2/1000范围内其作用效果较好,该用量条件下高分子吸持水分平均可释放83.7%供植物吸收利用。2种高分子材料对土壤持水能力的作用效果基本相同。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

为分析不同土地利用方式下坡面土壤水分特性的差异和规律,对黄土高原水蚀风蚀交错带典型坡面上农地、林地和草地的土壤水分特性进行了分析。结果表明:(1)苜蓿地土壤的持水能力和供水能力最强,其次是杏树林和长芒草地,谷子地最差;(2)通过土壤水分有效性分析发现,水蚀风蚀交错带田间持水量相当于-0.2×105Pa土壤基质势时的土壤含水量,永久凋萎点则低于-2.0×106Pa土壤基质势对应的土壤含水量;(3)苜蓿地有效水含量最高,谷子地有效水含量最低,而且苜蓿地土壤有效水含量的提高主要是提高了迟效水部分;(4)对不同土地利用方式下的土壤比水容量变化曲线研究表明,土壤比水容量在田间持水量附近随土壤含水量的降低减小的很快,而当土壤水分降低到田间持水量的50%~60%以下时,土壤比水容量基本不变。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Taihu Lake is the third largest fresh water lake in China. With the fast economic development, abundant industrial and agricultural waste water has been discharged into Taihu Lake, causing the eutrophication of the water quality, which greatly affected the water utility. In the past decades, the treatment of Taihu Lake has witnessed limited success. Therefore, it is practically and theoretically significant to study the eutrophication of Taihu Lake. This research has focused on the issue of water quality including the characteristics of spatial and temporal distributions, and the rules of nutrient diffusion in the Taihu lake area. Based on the monitoring data, the basis distribution characteristics of water quality in Taihu Lake are analyzed. Comparing Taihu Lake with other Lakes shows that one important reason for Taihu eutrophication is the long period of water retention. A transporting and diffusing model of Taihu nutrient is developed by combining with the hydrodynamics model. Using the model, the concentration field of the total phosphorus (TP) and the influence of wind-driven current are numerically investigated, which leads to the conclusion that the flow field has a great influence on the spatial and temporal distributions of TP in Taihu Lake. Furthermore, the effect for improving the water quality by the project of water diversion from the Yangtze River to Taihu Lake was analyzed by simulation. The results demonstrate that short-term water diversion cannot improve the water quality of the heavily-polluted Meiliang Bay and the western bank areas of Taihu Lake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

在试验过程中,通常采用一个土样进行连续试验来测定土壤的持水特征。此时,土样的有机质、黏粒矿物类型和阳离子交换量等性质基本保持不变,而土壤的容重在水力学和机械压力共同作用下会发生很大的变化。因此,我们认为实测的土壤持水特征不再是土壤吸力和含水量相对应的一条曲线,而是由土壤质量含水量、吸力和容重三变量共同确定的一个曲面。本文在Brooks-Corey土壤水分特征曲线模型的基础上,提出了两种描述土壤质量含水量、吸力和容重三变量关系的曲面模型,分析了模型的优缺点和适用条件,并采用离心机石蜡控容重法实测了四种质地填装土壤的三变量特征曲面。研究结果表明:土壤持水特征是由土壤质量含水量、吸力和容重三变量共同确定的一个曲面这一假设是合理的;类似于Brooks-Corey模型的两种幂函数经验曲面模型能够合理地描述填装土壤的实测数据,决定系数均大于0.94;模型Ⅰ的拟合效果略好于模型Ⅱ,但模型Ⅱ包含两个物理意义明确的参数,具有一定的优势。这一研究将为校正容重变化对土壤水力学参数的影响提供新的途径。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

以聚丙烯酰胺(PAM)与磷石膏(PG)为土壤结构改良剂,利用离心机法,测定土壤水分特征曲线,从分析土壤的吸水能力和持水能力的角度出发,研究土壤结构改良剂对土壤水分有效性的影响。研究结果表明,土壤的吸水能力、持水能力与释水能力均表现出与用量密切相关;在使用土壤结构改良剂的情况下,仍然可用van Genuchten方程很准确的模拟土壤吸力与含水率之间的关系,即可作为使用土壤结构改良剂后的土壤水分特征曲线的模拟表达式;在试验的用量范围内,土壤结构改良剂的使用不会影响植物对水分的吸收和利用。

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Saprolite is the residual soil resulted from completely weathered or highly weathered granite and with corestones of parent rock. It is widely distributed in Hong Kong. Slope instability usually happens in this layer of residual soil and thus it is very important to study the engineering geological properties of Saprolite. Due to the relic granitic texture, the deformation and strength characteristics of Saprolite are very different from normal residual soils. In order to investigate the effects of the special microstructure on soil deformation and strength, a series of physical, chemical and mechanical tests were conducted on Saprolite at Kowloon, Hong Kong. The tests include chemical analysis, particle size analysis, mineral composition analysis, mercury injection, consolidation test, direct shear test, triaxial shear test, optical analysis, SEM & TEM analysis, and triaxial shear tests under real-time CT monitoring.Based on the testing results, intensity and degree of weathering were classified, factors affecting and controlling the deformation and strength of Saprolite were identified, and the interaction between those factors were analyzed.The major parameters describing soil microstructure were introduced mainly based on optical thin section analysis results. These parameters are of importance and physical meaning to describe particle shape, particle size distribution (PSD), and for numerical modeling of soil microstructure. A few parameters to depict particle geometry were proposed or improved. These parameters can be used to regenerate the particle shape and its distribution. Fractal dimension of particle shape was proposed to describe irregularity of particle shapes and capacity of space filling quantitatively. And the effect of fractal dimension of particle shape on soil strength was analyzed. At the same time, structural coefficient - a combined parameter which can quantify the overall microstructure of rock or soil was introduced to study Saprolite and the results are very positive. The study emphasized on the fractal characteristics of PSD and pore structure by applying fractal theory and method. With the results from thin section analysis and mercury injection, it was shown that at least two fractal dimensions Dfl(DB) and Df2 (Dw), exist for both PSD and pore structure. The reasons and physical meanings behind multi-fractal dimensions were analyzed. The fractal dimensions were used to calculate the formation depth and weathering rate of granite at Kowloon. As practical applications, correlations and mathematical models for fractal dimensions and engineering properties of soil were established. The correlation between fractal dimensions and mechanical properties of soil shows that the internal friction angle is mainly governed by Dfl 9 corresponding to coarse grain components, while the cohesion depends on Df2 , corresponding to fine grain components. The correlations between the fractal dimension, friction angle and cohesion are positive linear.Fractal models of PSD and pore size distribution were derived theoretically. Fragmentation mechanism of grains was also analyzed from the viewpoint of fractal. A simple function was derived to define the theoretical relationship between the water characteristic curve (WCC) and fractal dimension, based on a number of classical WCC models. This relationship provides a new analytical tool and research method for hydraulic properties in porous media and solute transportation. It also endues fractal dimensions with new physical meanings and facilitates applications of fractal dimensions in water retention characteristics, ground water movement, and environmental engineering.Based on the conclusions from the fractal characteristics of Saprolite, size effect on strength was expressed by fractal dimension. This function is in complete agreement with classical Weibull model and a simple function was derived to represent the relationship between them.In this thesis, the phenomenon of multi-fractal dimensions was theoretically analyzed and verified with WCC and saprolite PSD results, it was then concluded that multi-fractal can describe the characteristics of one object more accurately, compared to single fractal dimension. The multi-fractal of saprolite reflects its structural heterogeneity and changeable stress environment during the evolution history.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

随土壤剖面深度的增加,土壤含水量逐渐降低,上层土壤含水量变幅大于下层。在同一氮肥水平下,夏玉米各生长期内0~50 cm土层含水量呈施磷处理高于不施磷处理,50~110 cm土层则反之。苗期—拔节—灌浆—收获期0~110 cm土壤蓄水量呈升高—降低—升高趋势;苗期呈氮磷配施处理高于单施氮肥处理,其它生长期氮肥与磷肥水平为120 kg/hm2配施处理最高;表层50 cm土层蓄水量均呈现氮磷配施处理高于单施氮肥处理,50~110 cm土层则反之。氮磷配施能显著提高产量及水分利用效率,二者均以配施磷肥120 kg/hm2处理最高;当施磷量超过120 kg/hm2后,产量和水分利用效率反而有下降趋势。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过人工配制不同质地土壤,测定土壤水分特征曲线,研究了土壤中砂粒含量对其水分蓄持能力的定量影响。结果表明:(1)砂粒含量对土壤水分蓄持能力有较大影响,土壤持水能力随砂粒含量增加递减,表征土壤持水能力的水分特征曲线Gardner模型参数及表征土壤饱和含水量的Van Genuchten模型参数均随砂粒含量增加逐渐减小。(2)砂粒含量对土壤比水容量有较大影响,试验土壤在任一吸力水平下的比水容量值均随其砂粒含量增加递减。(3)试验土壤饱和含水量与砂粒含量呈线性关系,田间持水量、凋萎系数与砂粒含量都呈开口向下抛物线右半段的关系。(4)试验土壤有效水、迟效水含量随砂粒含量增加递减,二者与砂粒含量均呈开口向下抛物线右半段的关系。易效水含量与砂粒含量呈开口向上抛物线关系。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

通过人工配制不同质地土壤,测定土壤水分特征参数,研究土壤中黏粒质量分数对其水分蓄持能力的定量影响。结果表明:1)黏粒质量分数对土壤水分蓄持能力有较大影响,土壤持水能力随黏粒质量分数增加而递增。2个水分特征曲线模型——Gardner模型及van Genuchten模型中,表征土壤持水能力的参数均随黏粒质量分数增加而增大。2)黏粒质量分数对土壤比水容量有较大影响,试验土壤在任一水吸力水平下的比水容量值均随其黏粒质量分数增大而增大。3)试验土壤饱和含水量、田间持水量分别与黏粒质量分数呈指数、对数正相关,凋萎系数与黏粒质量分数呈指数正相关。4)试验土壤有效水、迟效水含量随黏粒质量分数增加呈先升高后降低趋势,二者与黏粒质量分数均呈抛物线关系,最高点分别出现在黏粒质量分数为35.9%和35.8%处,易效水含量与黏粒质量分数相关性不显著。研究结果可为黄土区土壤水分蓄持机制进一步研究提供一定理论依据。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在森林生态系统中,地被物由林下枯落物、苔藓层以及表层土壤的根系组成(Kosugiet al.,2001;程金花等,2003)。在动物、微生物以及环境温湿度的作用下,地被物不断分解,补充了土壤养分含量(刘洋等,2006)。地被物在地表形成一层结构疏松的毡层,不仅能够减小雨水对地面的冲击,阻滞和分散降水,还增加了地表粗糙度,能够阻滞地表径流,吸收和储存降水,促使水分缓慢入渗,在防止土壤侵蚀和保持水土方面发挥了重要作用(张洪江等,2003)。此外,研究还发现,地被物层能够减少土壤蒸发(Schaapet al.,1997),缓解表层土温变化,影响冬季土壤的冻结过程(Sharratt,1997),同时又是林下种子萌发和幼苗更新的制约因素之一(班勇等,1995)。目前,国内外地被物研究主要集中于枯落物的凋落动态(张冀等,2001;杨玉盛等,2001;郑征等,2005)、苔藓层和枯落物的持水特性(Naethet al.,1991;薛立等,2005;叶吉等,2004;Zhanget al.,2006)、枯落物分解及养分归还(王瑾等,2001;Chandiniet al.,2002;魏晶等,2004;邵玉琴等,2004)、枯落...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在离心机模拟不同水吸力条件下,研究了聚丙烯酸钠(sodium polyacrylate记作SP)5种使用浓度(占干土质量0,0.01%,0.08%,0.2%与1%)对3种土壤(砂土、壤土、黏土)持水能力的影响;采用大田试验研究了地表撒施2 g/m2SP对冬小麦与下季玉米产量及WUE影响。结果表明:3种土壤在0.01 MPa至1.5 MPa水吸力下的持水能力随着SP用量的增加而增加,砂土的作用效果较壤土、黏土更显著;3种土壤适宜浓度为0.08%~0.2%,最佳用量为0.2%,此用量条件下砂土、壤土、黏土的最大毛管持水量分别较对照增加了138.61%,7.22%,62.70%;不灌水条件下,SP处理较不施用SP冬小麦增产4%,WUE增加5.7%,灌浆期灌水28.5 mm条件下SP处理较不施用SP增产1%,WUE降低1%;SP处理的玉米产量较对照降低0.5%,WUE提高3%,效果明显低于对冬小麦效果。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

干旱环境常常由于多变的降水事件和贫瘠土壤的综合作用,表现出较低的生产力和较低的植被覆盖度。全球性的气候变暖和人类干扰必将使得干旱地区缺水现状越来越严竣。贫瘠土壤环境中已经很低的有效养分含量也将会随着干旱的扩大而越来越低。干旱与半干旱系统中不断加剧的水分与养分的缺失将严重限制植物的生长和植被的更新,必然会使得已经恶化的环境恶化速率的加快、恶化范围的加大。如何抑制这种趋势,逐步改善已经恶化的环境是现在和将来干旱系统管理者面临的主要关键问题。了解干旱系统本土植物对未来气候变化的适应机制,不仅是植物生态学研究的重要内容,也对人为调节干旱环境,改善干旱系统植被条件,提高植被覆盖度具有重要的实践意义。 本研究以干旱河谷优势灌木白刺花(Sophora davidii)为研究对象,通过两年大棚水分和施N控制实验和一个生长季野外施N半控制实验,从植物生长-生理-资源利用以及植物生长土壤环境特征入手,系统的研究了白刺花幼苗生长特性对干旱胁迫和施N的响应与适应机制,并试图探讨施N是否可调节干旱系统土壤环境,人工促进干旱条件下幼苗定居,最终贡献于促进植被更新实践。初步研究结论如下: 1)白刺花幼苗生长、生物量积累与分配以及水分利用效率对干旱胁迫和施N处理的适应白刺花幼苗株高、基径、叶片数目、叶面积、根长、生物量生产、相对含水量和水分利用效率随着干旱胁迫程度的增加而明显降低,但地下部分生物量比例和R/S随着干旱胁迫程度的增加而增加。轻度施N处理下幼苗株高、基径、叶片数目、叶片面积和生物量生产有所增加。但重度施N处理下这些生长指标表现出微弱甚至降低的趋势。严重干旱胁迫条件下,幼苗叶面积率、R/S、相对含水量和水分利用效率也以轻度施N处理为最高。 2)白刺花幼苗叶片光合生理特征对干旱胁迫和施N处理的适应叶片光合色素含量和叶片光合效率随着干旱胁迫程度的增加而显著降低,并且PS2系统在干旱胁迫条件下表现出一定程度的光损害。但是比叶面积随着干旱胁迫程度的增加而增加。在相对较好水分条件下幼苗净光合速率的降低可能是因为气孔限制作用,而严重干旱胁迫条件下非气孔限制可能是导致幼苗叶片光合速率下降的主要原因。叶片叶绿素含量、潜在光合能力、羧化效率、光合效率以及RUBP再生能力等在施N处理下得到提高,并因而改善干旱胁迫条件下光合能力和效率。虽然各荧光参数对施N处理并无显著的反应,但是干旱胁迫条件下qN和Fv/Fm在轻度施N处理下维持相对较高的水平,而两年连续处理后在严重干旱胁迫条件下幼苗叶片光合效率受到重度施N处理的抑制,并且Fv/Fm和qN也在重度施N处理下降低。 3)白刺花幼苗C、N和P积累以及N、P利用效率对干旱胁迫和施N处理的适应白刺花幼苗C、N和P的积累,P利用效率以及N和P吸收效率随干旱胁迫程度的增加而显著降低,C、N和P的分配格局也随之改变。在相同水分处理下,C、N和P的积累量、P利用效率以及N和P吸收效率在轻度施N处理下表现为较高的水平。然而,C、N和P的积累量和P利用效率在重度施N处理下不仅没有表现出显著的正效应,而且有降低的趋势。另外,在相同水分条件下白刺花幼苗N利用效率随着施N强度的增加而降低。 4)白刺花幼苗生长土壤化学与微生物特性对干旱胁迫和施N的适应白刺花幼苗生长土壤有机C、有效N和P含量也随干旱胁迫程度的增加而明显降低。干旱胁迫条件下土壤C/N、C/P、转化酶、脲酶和碱性磷酸酶活性的降低可能表明较低的N和P矿化速率。尽管微生物生物量C、N和P对一个生长季干旱胁迫处理无显著反应,但微生物生物量C和N在两年连续干旱胁迫后显著降低。土壤有机C和有效P含量在轻度施N处理下大于重度施N处理,但是有效N含量随着施N强度的增加而增加。微生物生物量C和N、碱性磷酸酶和转化酶活性也在轻度施N处理下有所增加。但是碱性磷酸酶活性在重度施N处理下降低。 5)野外条件下白刺花幼苗生长特征及生长土壤生化特性对施N的适应植物生长、生物生产量、C的固定、N、P等资源的吸收和积累、其它受限资源的利用效率(如P)在轻度施N处理下均有所增加,但N利用效率有所降低。幼苗生物生产量及C、N和P等资源的分配格局在轻度施N处理下也没有明显的改变。白刺花幼苗叶片数目、生物生产量和C、N、P的积累量在重度施N处理下虽然也相对于对照有所增加,但幼苗根系长度显著降低。生物量及资源(生物量、C、N、P)在重度施N处理下较多地分配给地上部分(主要是叶片)。另外,土壤有机C、全N和有效N含量随外源施N的增加而显著增加,土壤pH随之降低,但土壤全P含量并无显著反应。其中有机C含量和有效P含量以轻度施N处理最高。微生物生物量C、N和P在轻度施N处理下也显著增加,而微生物生物量C在重度施N处理下显著降低。同时,转化酶、脲酶、碱性磷酸酶和中性磷酸酶活性在施N处理下也明显的提高,但酸性磷酸酶和过氧化氢酶活性显著降低,其中碱性磷酸酶和中性磷酸酶活性以轻度施N处理最高。 综合分析表明,干旱河谷水分和N严重限制了白刺花幼苗的生长。施N不能完全改变干旱胁迫对白刺花幼苗的抑制的作用,但是由于施N增加土壤N有效性,改善土壤一系列生物与化学过程,幼苗的生长特性也对施N表现出强烈的反应,表现为植物结构与资源分配格局的改善,植物叶片光合能力与效率的提高,植物生长以及利用其他受限资源(如水分和P)的效率的增加,致使植物自身生长及其生长环境在干旱环境下得到改善。但是过度施N不仅不能起到改善干旱胁迫下植物生长环境、促进植物生长的作用,反而在土壤过程以及植物生长过程中加重干旱胁迫对植物的伤害。因此,建议在采用白刺花作为先锋种改善干旱河谷系统环境的实践中,可适当施加N以改善土壤环境,调节植物利用与分配资源的效率,促进植物定居,得到人工促进种群更新的目的。但在实践过程中也要避免过度施N。 Arid regions of the world are generally noted for their low primary productivity which is due to a combination of low, unpredictable water supply and low soil nutrient concentrations. The most serious effects of global climate change and human disturbances may well be those which related to increasing drought since drought stress has already been the principal constraint in plant growth. The decline in total rainfall and/or soil water availability expected for the next decades may turn out to be even more drastic under future warmer conditions. Nevertheless, water deficit is not the only limiting factor in arid and semiarid environments. Soils often suffer from nutrient (especially N and P) deficiencies in these ecosystems, which can also be worsened by climate change. How to improve the poor soil quality and enhance the vegetation coverage is always the problem facing ecosystem managers. The adaptive mechanisms of native plant to future climate change is always the focus in plant ecology, it also plays important roles in improving vegetation coverage by manual controlled programmes. Sophora davidii is a native perennial shrub of arid valleys, which is often predominant on eroded slopes and plays a vital role in retaining ecological stability in this region. It has been found that S. davidii was better adapted to dry environment than other shrubs, prompting its use for re-vegetation of arid lands. A two-years greenhouse experiment and a field experiment were conducted in order to understand the adaptation responses of Sophora davidii seedlings to different water and N conditions, and further explore if additional N supply as a modified role could enhance the adaptation ability of S. davidii seedlings to dry and infertile environment. Two-month old seedlings were subjected to a completely randome design with three water (80%, 40% and 20% water field capacity (FC)) and three N supply (N0: 0, Nl: 92 and Nh: 184 mg N kg-1 soil) regimes. Field experiment was arranged only by three N supplies in the dry valley. 1) The growth, biomass partitioning and water-use efficiency of Sophora davidii seedlings in respond to drought stress and N supply Seedlings height, basal diameter, leaf number, leaf area, root length, biomass production, relative water content (RWC) and WUE were decreased with increase of drought stress. An increase in below-ground biomass was observed indicating a higher root/shoot ratio (R/S) under drought stress conditions. Low N supply increased seedlings height, basal diameter, leaf number, leaf area, and biomass production, but decreased root length. In contrast, these growth characteristics showed little or negative effect to high N supply treatment. Leaf percentages increased with increase of N supply, but fine root percentages decreased. In addition, Low N supply rather than the other two N treatments increased leaf area ratio (LAR), leaf/fine root mass ratio (L/FR), R/S and RWC under severe drought stress (20%FC), even though these parameters could increase with the high N supply treatment under well-watered condition (80%FC). Moreover, Low N supply also increased WUE under three water conditions, but high N supply had little effect on WUE under drought stress conditions (40%FC and 20%FC). 2) Leaf gas exchange and fluorescence parameters of Sophora davidii seedlings in respond to drought stress and N supply Leaf area (LA), photosynthetic pigment contents, and photosynthetic efficiency were decreased with increase of drought stress, but specific leaf area (SLA) increased. Photodamage in photosystem 2 (PS2) was also observed under drought stress condition. The decreased net photosynthetic rate (PN) under relative well-watered water conditions might result from stomatal limitations, but the decreased PN under other hand, photosynthetic capacity by increasing LA, photosynthetic chlorophyll contents, Pnmax, CE, Jmax were increased with increase N supply, and photosynthetic efficiency was improved with N supply treatment under water deficit. Although N supply did a little in alleviating photodamages to PS2 caused by drought stress, low N supply enhanced qN and kept relative high Fv/Fm under drought stress condition. However, high N supply inhibited leaf photosynthetic efficiency, and declined Fv/Fm and qN under severe drought stress condition after two year continues drought stress and N supply. 3) Carbon accumulation, nitrogen and phosphorus use efficiency of Sophora davidii seedlings in respond to drought stress and N supply C, N and P accumulation, NUE , N and P uptake efficiency (NUtE and NUtE ) P N P were decreased with increase of drought stress regardless of N supply. On the other hand, the S. davidii seedlings exhibited strong responses to N supply, but the responses were inconsistent with the various N supply levels. Low N supply rather than the other two N treatments increased C, N and P accumulation, improved NUEP, NUtE and NUtE under corresponding water condition. In contrast, high N supply N P did few even depressed effects on C, N and P accumulation, and NUEP, although NUtEN and NUtEP could increase with high N supply under corresponding water conditions. Even so, a decrease of NUEN was observed with increase of N supply under corresponding water conditions. 4) Soil microbial and chemical characters in respond to drought stress and N supply The content of soil organic C, available N and P were decreased with increase of drought stress. Decreases in C/N and C/P, and invertase, urea and alkaline phosphatase activity were also observed under drought stress conditions, indicating a lower N and P mineralization rate. Although microbial biomass C, N and P showed slight responses to drought stress after one growth period treatment, microbial biomass C and N were also decreased with increase of drought stress after two year continuous treatment. The content of soil organic C and available P showed the stronger positive responses to low N supply than which to high N supply, although than the other two N treatments increased microbial biomass N and invertase activity under severe drought stress condition, even though invertase activity could increase with high N supply treatment under relative well-water conditions. Moreover, low N supply treatment also increased C/P and alkaline phosphatase activity which might result from higher P mineralization, but high N supply did negative effects on alkaline phosphatase activity. 5) The growth characteristics of Sophora davidii seedlings and soil microbial and chemical characters in respond to N supply under field condition Low N supply facilitated seedlings growth by increasing leaf number, basal diameter, root length, biomass production, C, N and P accumulation and absorption, and enhancing the use efficiency of other limited resources as P. Compared to control, however, low N supply did little effect on altering biomass, C, N and P portioning in seedlings components. On the contrary, high N supply treatment also increased leaf number, biomass and C, N and P accumulation relative to control, but significantly decreased root length, and altered more biomass and resources to above-ground, which strongly reduced the ability of absorbing water under drought condition, and thus which might deep the drought stress. In addition, N supply increased soil C, N and available N content, but declined pH and showed little effects on P content. Low N supply showed higher values of soil C and available P content. Low N supply also increased microbial biomass C, N and P, although high N supply decreased microbial biomass C. N supply significantly enhanced soil invertase, urea, alkaline and neutral phosphratase activity, while declined acid phosphratase and catalase activity. Low N supply exhibited higher alkaline and neutral phosphratase activity compared to the others. The results from this study indicated that both drought and N limited the growth of S. davidii seedlings and their biomass production. Regardless of N supply levels, drought stress dramatically reduced the seedlings growth and biomass production. Although plant growth parameters, including basal diameter, height, leaf number, and biomass and their components were observed to be positive responses to low N supply, N supply alone can not alter the diminishing tendency which is caused by drought. available N content increased with increase N supply. In addition, low N supply rather These findings imply that drought played a primary limitation role and N was only the secondary. Even so, appropriate N supply was seemed to enhance the ability that S. davidii seedlings adapted to the xeric and infertile environment by improving soil processes, stimulating plant growth, increasing recourses accumulation, enhancing use efficiency of other limited resources, and balancing biomass and resources partitioning. Appropriate N supply, therefore, would be recommended to improve S. davidii seedling establishment in this region, but excess N supply should be avoided.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

以生活炉渣、建筑废料、生物秸秆等城乡废弃资源为原料,制备一种面向节水农业的环保新产品———土壤扩蓄增容肥.实验结果表明:在棉花苗期,6种土壤扩蓄增容肥配方的节水效果较土对照高300倍,干物质积累增加4.77%~50.00%.6种配方的皮棉产量均比对照高,增产幅度为4.70%~14.25%,纤维物理性状有所改善.产量高低顺序依次是,玉米秸秆>小麦秸秆>生活炉渣>秸秆木炭>建筑废料>煤矸石>CK.利用城乡废弃资源生产的扩蓄增容剂,不仅能改良土壤物理和化学性状,更是棉花增产、优质、节水、降低生产成本的关键技术措施之一,具有显著的生态效益、社会效益和经济效益.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

为探讨在宁南山区推广保护性耕作技术的可行性,2005~2006年在宁夏彭阳县就垄沟、传统、覆膜3种不同的耕作方式的适应性进行试验研究,对比分析了3种耕作方式下冬小麦的生长状况、产量及农田土壤含水量变化的关系。结果表明:覆膜耕作可增加土壤蓄水保墒性能,提高水分利用效率,增产增效明显。对三种耕作方式下作物产量进行分析,覆膜耕作比传统耕作增产46%;垄沟耕作比传统耕作减产71%。覆膜耕作水分利用效率比传统耕作提高了33%;垄沟耕作由于在越冬期垄上冬小麦大面积冻死,不适宜在宁南山区推广。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

研究表明 ,5~ 7年生沙棘林冠层可截留降水 8 5%~ 4 9 0 % ,并降低雨滴动能 ;枯枝落叶层重5 4 6t·hm- 2 ,其最大持水量可达 15 31t·hm- 2 ,有 1cm厚枯枝落叶层覆盖地表 ,即可基本控制水土流失 ;根系可以提高土壤的抗冲性和抗蚀性 ,与无根系土壤相比 ,可减少土壤冲刷量 55%~ 88% .据1988~ 1994年雨季径流小区测定 ,沙棘林在栽植后 4~ 5年可充分发挥水土保持作用 ,与农地相比 ,可减少地表径流量 87 1% ,减少土壤流失量 99 0 % .此外 ,它还可以每 4~ 5年提供薪材 10~ 30t·hm- 2 ,提高土壤中有机质和氮素含量 115%和 90 % ,生产沙棘果实 50 0kg·hm- 2 .所有这些表明了沙棘在治理黄土高原水土流失和改善人民生活条件 ,在实现由“恶性循环”向“良性循环”转变等方面 ,具有十分重要的作用 .目前 ,黄土地区已建立起若干利用沙棘固坡、防洪、解决燃料短缺和综合治理小流域的成功典型