16 resultados para VIRTUAL-REALITY
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
D-vision系统(这里"D"有"Divide Screen"和"Duplex-Vision"双重含义)是一类基于PC机群的多投影虚拟现实系统(或简称多投影系统).给出D-vision系统中双手6自由度力觉交互的实现过程:在客户端协同控制两个力觉交互设备Spidar-G(Space Interface for Artificial Reality withGrip)实现双手协作交互,其次构造一个基于UDP的Socket类完成客户端和绘制服务器节点之间的通讯,传递跟踪球的位置、方向等信息;然后,通过分布绘制实现在大屏幕上无缝显示.最后实验结果表明:在D-vision系统中双手6自由度力觉交互是一种自然直观的人机交互方式.
Resumo:
文中提出一种基于复用计算的纹理合成方法,逐步地利用已合成的部分纹理来生成更大的纹理块,以进行后续的纹理合成计算.由此,该方法可节省大量耗时的纹理块选择及缝合计算,提高了合成效率.实验表明,新方法可实时合成2048×2048像素的大纹理,而已有工作至多只能以交互的速度进行这样的合成.
Resumo:
ACM SIGGRAPH; ACM SIGCHI
Resumo:
本文采用VR技术,模拟真实情况建立了一个水下机器人仿真系统。该系统使用与真实系统相同的控制器和输入设备,提供操作员训练、人—机智能控制仿真、机器人轨迹规划仿真等功能,仿真数据能够引导真实机器人运动。文中以仿真实例说明了系统的有效性。
Resumo:
介绍了一种利用人机合作技术在非结构环境引导机械手抓取静态目标的方法.分别介绍了将激光—CCD摄像机系统与操作者的经验相结合获得抓取目标位置的方法,及将虚拟现实技术与操作者的经验相结合获得抓取目标姿态的方法.继而利用基于模型的视觉引导技术,引导手臂完成抓取操作.
Resumo:
利用虚拟现实技术虚拟出月球机器人在月面上的作业环境和作业过程,是提高机器人作业的安全系数和工作效率的一条有效途径。在3D重建得到的虚拟月面环境中,如果采用通常的单纯基于运动学(或者动力学)模型的仿真方法,对机器人的作业和运动进行虚拟,那么机器人与地形交互的过程中容易产生接触偏差。而且,随着仿真时间的推进,这种接触偏差会逐渐积累并不断增大,进而严重影响仿真测试的精度和效果。为了消除月球机器人仿真中的轮地交互误差,在分析误差来源的基础上,提出了基于运动学优化的解决方法。最后利用实际的虚拟现实仿真系统,验证了所提出方法的有效性。
Resumo:
分析了轮式移动机器人(WMR)在不平坦的三维地形上运动的运动学模型.利用速度投影法,得到了WMR运动模型的一种新形式.基于虚拟现实技术,利用VC++OpenGL实现了WMR虚拟漫游系统.该系统具有较强的交互性和实时性,为星球探测机器人的虚拟导航、遥操作等提供了验证平台.
Resumo:
结合星球探测的应用背景,对漫游车的工作方式进行了研究,针对车载机械臂开发了一套基于立体视觉的机械臂平面定位仿真系统。该系统依靠虚拟现实技术,通过虚拟机械臂对三维重建得到的平整物体表面的定位仿真得到机械臂的各关节参数,以此指导真实机械臂的运动。论述了基于立体视觉的机械臂定位机理和基于OpenGL的虚拟机械臂的实现过程。采用VC++构建了仿真实验平台,进行了定位实验,获得了较高的定位精度。
Resumo:
基于虚拟现实技术的人机交互方法为面向任务的机器人远程作业研究提供了新的思想和思路 ,增强了机器人系统的遥控作业能力 .本文对机器人系统中虚拟环境和人机交互方法研究进行了综述 ,对虚拟环境中的示教和遥操作进行了评析 ,并探讨了未来遥操作机器人系统作业的发展趋势
Resumo:
本文以水下机器人的遥操作作业为应用背景 ,提出并实现了虚拟现实技术和视觉感知信息辅助机器人遥操作实验系统 .该系统使用了 CAD模型和立体视觉信息完成遥操作机器人及其作业环境的几何建模和运动学建模 ,实现了虚拟作业环境的生成和实时动态图形显示 .采用了基于立体视觉的虚拟环境与真实环境的一致性校正、图形图像叠加、作业体与环境位姿关系建立、基于网络的监控通讯等关键技术 .在这个实验系统中 ,操作人员可利用所生成的虚拟环境 ,在多视点、多窗口作业状态图形和图像显示帮助下 ,实时动态地进行作业观测与机器人遥操作与运动规划 ,为先进遥操作机器人系统的实现提供了经验和关键技术 .
Resumo:
介绍了一套多水下机器人三维视景仿真系统。该系统采用虚拟现实技术,利用虚拟仿真软件VegaPrime 与Visual C++.NET 2003 混合编程实现三维视景仿真。它主要用于海洋环境的模拟和多水下机器人运行时的位姿更新、碰撞检测、环境效果及各种特效的实时显示。此外,它还具有响应各种输入/输出设备的功能和通过人性化图形界面接口与用户进行交互的功能。
Resumo:
Synthetic Geology Information System (SGIS) is an important constituent part of the theory of Engineering Geomechanics Mate-Synthetic (EGMS), and is the information system more suited for the collection, storage, management, analysis and processing to the information coming from engineering geology,' geological engineering and geotechnical engineering. Its contents involve various works and methods of the investigation, design, and construction in different stages of the geological engineering. Engineering geological and three-dimensional modeling and visualization is the fundamental part of the SGIS, and is a theory, method and technique by which, adopting the computer graphics and image processing techniques, the data derived from engineering geological survey and the calculated results obtained from the geomechanical numerical simulation and analysis are converted to the graphics and images displayed on the computer screen and can be processed interactively. In this paper, the significance and realizing approaches of the three-dimensional modeling and visualization for the complex geological mass in the engineering geology are discussed and the methods of taking advantage of the interpolation and fitting for the scattered and field-surveyed data to simulate the geological layers, such as the topography and earth surface, the groundwater table and the stratum boundary, are researched into. At the mean time, in mind the characteristics of the structure of the basic data for three-dimensional modeling, its visual management can be resolved into the engineering surveyed database management module, plot parameter management module and data output module and the requirement for basic data management can be fulfilled. In the paper, the establishment and development of the three-dimensional geological information system are probed tentatively, and an instance of three-dimensional visual Engineering Distribution Information System (EDIS), theConstruction Management Information System for an airport, in which the functions, such as the real-time browse among the three-dimensional virtual-reality landscapes of the airport construction from start to finish, the information query to the airport facility and the building in the housing district and the recording and playback of the animation sets for the browse and the takeoff and landing of the planes, is developed by applying the component-mode three-dimensional virtual-reality geological information system (GIS) software development kits (SDK), so the three-dimensional visual management platform is provided for the airport construction. Moreover, in the gaper, integrated with the three-dimensional topography visualization and its application in the Sichuan-Tibet Highways, the method of the digital elevation model (DEM) data collection from the topographic maps is described, and the three-dimensional visualization and the roaming about the terrain along the highway are achieved through computer language programming. Understanding to the important role played by the varied and unique topographical condition in the gestation and germination of the highly-dense, frequently-arising and severely-endangered geological hazards can be deepened.
Resumo:
Study of 3D visualization technology of engineering geology and its application to engineering is a cross subject which includes geosciences, computer, software and information technology. Being an important part of the secondary theme of National Basic Research Program of China (973 Program) whose name is Study of Multi-Scale Structure and Occurrence Environment of Complicated Geological Engineering Mass(No.2002CB412701), the dissertation involves the studies of key problems of 3D geological modeling, integrated applications of multi-format geological data, effective modeling methods of complex approximately layered geological mass as well as applications of 3D virtual reality information management technology.The main research findings are listed below:Integrated application method of multi-format geological data is proposed,which has solved the integrated application of drill holes, engineering geology plandrawings, sectional drawings and cutting drawings as well as exploratory trenchsketch. Its application can provide as more as possible fundamental data for 3Dgeological modeling.A 3D surface construction method combined Laplace interpolation points withoriginal points is proposed, so the deformation of 3D model and the crossing error ofupper and lower surface of model resulted from lack of data when constructing alaminated stratum can be eliminated.3D modeling method of approximately layered geological mass is proposed,which has solved the problems of general modeling method based on the sections or points and faces when constructing terrain and concordant strata.The 3D geological model of VII dam site of Xiangjiaba hydropower stationhas been constructed. The applications of 3D geological model to the auto-plotting ofsectional drawing and the converting of numerical analysis model are also discussed.3D virtual reality information integrated platform is developed, whose mostimportant character is that it is a software platform having the functions of 3D virtualreality flying and multi-format data management simultaneously. Therefore, theplatform can load different 3D model so as to satisfy the different engineeringdemands.The relics of Aigong Cave of Longyou Stone Caves are recovered. Thereinforcement plans of 1# and 2# cave in phoenix hill also be expressed. The intuitiveexpression provided decision makers and designers a very good environment.The basic framework and specific functions of 3D geological informationsystem are proposed.The main research findings in the dissertation have been successfully applied to some important engineering such as Xiangjiaba hydropower station, a military airport and Longyou Stone Caves etc.
Resumo:
Currently,one of the important research areas in Spatial updating is the role of external (for instance visual) and internal (for instance proprioceptive or vestibular) information in spatial updating of scene recognition. Our study uses the paradigm of classic spatial updating research and the experimental design of investigation of Burgess(2004),first, we will explore the concrete influence of locomotion on scene recognition in real world; next, we will use virtual reality technology, which can control many spatial learning parameters and exclude the influence of extra irrelevant variables, to explore the influence of pure locomotion without visual cue on scene recognition, and furthermore, we will explore whether the ability of spatial updating can be transferred to new situations in a short period of time and compare the result pattern in real word with that in virtual reality to test the validity of virtual reality technology in spatial updating of scene recognition research. The main results of this paper can be summarized as follows: 1. In real world, we found two effects: the spatial updating effect and the viewpoint dependent effect, this result indicated that the spatial updating effect based on locomotion does not eliminate the viewpoint dependent effect during the scene recognition process in physical environment. 2. In virtual reality environment, we still found two effects: the spatial updating effect and the viewpoint dependent effect, this result showed us that the spatial updating effect based on locomotion does not eliminate the viewpoint dependent effect during the scene recognition process in virtual reality environment either. 3. The spatial updating effect based on locomotion plays double role in scene recognition: When subjects were tested in different viewpoint, spatial updating based on locomotion promoted scene recognition; while subjected were tested in same viewpoint, spatial updating based on locomotion had a negative influence on scene recognition, these results show us that spatial updating based on locomotion is automated and can not be ignored. 4. The ability of spatial updating can be transferred to new situations in a short period of time , and the experiment in the immersed virtual reality environment got the same result pattern with that in the physical environment, suggesting VR technology is a very effective method to do research on spatial updating of the scene recognition studies. 5. This study about scene recognition provides evidence to double system model of spatial updating in the immersed virtual reality environment.
Resumo:
Voice alarm plays an important role in emergency evacuation of public place, because it can provide information and instruct evacuation. This paper studied the optimization of acoustic and semantic parameters of voice alarms in emergency evacuation, so that alarm design can improve the evacuation performance. Both method of magnitude estimation and scale were implemented to investigate participants' perceived urgency of the alarms with different parameters. The results indicated that, participants evaluated the alarms with faster speech rate, with greater signal to noise ratio (SNR) and under louder noises more urgent. There was an interaction between noise level and content of voice alarm. Signals with speech rate below 4 characters / second were evaluated as non urgent at all. Intelligibility of the voice alarm was investigated by evaluating the key pointed recognition performance. The results showed that, speech rate’s effect was a marginal significance, and 7 characters / second has the highest intelligibility. It might because that the faster the signal spoken, the more attention was paid. Gender of speaker and SNR did not have a significant effect on the signals’ intelligibility. This paper also investigated impact of voice alarms' content on human behavior in emergency evacuation in a 3-D virtual reality environment. In condition of "telling the occupants what had happened and what to do", the number of participants who succeeded in evacuation was the largest. Further study, in which similar numbers of participants evacuate successfully in three conditions, indicated that the reaction time and evacuation time was the shortest in the aforesaid condition. Although one-way ANOVA shows that the difference was not significant, the results still provided some reference to the alarm design. In sum, parameters of voice alarm in emergency evacuation should be chosen to meet needs from both perceived urgency and intelligibility. Contents of the alarms should include "what had happened and what to do", and should vary according to noise levels in different public places.