97 resultados para Triple superphosphate
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The Reynolds-averaged Navier-Stokes equations for describing the turbulent flow in a straight square duct are formulated with two different turbulence models. The governing equations are then expanded as a multi-deck structure in a plane perpendicular to the streamwise direction, with each deck characterized by its dominant physical forces as commonly carried out in analytical work using triple-deck expansion. The resulting equations are numerically integrated using higher polynomial (H-P) finite element technique for each cross-sectional plane to be followed by finite difference representation in the streamwise direction until a fully developed state is reached. The computed results using the two different turbulence models show fair agreement with each other, and concur with the vast body of available experimental data. There is also general agreement between our results and the recent numerical works anisotropic k-epsilon turbulence model.
Resumo:
Sixty-four sets of three-dimensional models of DNA triplex base triplets (TBT) were built up based on codons by homologous modeling method and their energies were minimized. According to sequence of TBT and orientation of the third ODN strand third, the energies of monomers and water-K+-TBT ternary complexes of TBT were analyzed. The results showed: (i) The energies of the symmetric parallel monomers are generally lower than those of the symmetric anti-parallel monomers of TBT, but the energies of the symmetric parallel ternary complexes are higher than those of the symmetric anti-parallel ternary complexes of TBT. (ii) No matter TBTs are monomers or ternary complexes, the energies of asymmetric parallel TBTs are generally lower than those of the asymmetric anti-parallel ones. (iii) Although the energies of the parallel TBTs are correlated with those of the anti-parallel ones, the energy differences are significant between them. The results here suggest the sequences of TBTs and the orientations of the third ODN strands are two of the key factors that can influence the formation and stability of TBT. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We built 64 sets of 3D models of DNA triplex base triplets (TBT) and minimized their energies. The TBTs were divided into 32 pairs of conjugated ones on the basis of their sequence characteristic, and the energies of each pair of them were compared and analyzed, the results showed: (i) The duplex DNA of which any strand contains at least a couple of A or T, has a preference for selecting the oligodeoxyribonucleic acid (ODN) strand containing abundant T to form TBT. (ii) The duplex DNA of which any strand contains at least a couple of G or C has a preference for selecting ODN containing abundant G to form symmetric antiparallel TBT, but selecting ODN containing abundant C to form asymmetric parallel TBT. (iii) The duplex DNA of which any strand contains only one of A, T, G or C has a preference for selecting ODN containing abundant pyrimidines (T or C) to form antiparallel TBT. Additionally, two examples of TBTs applications, in designing ODN to form triplex with duplex were presented. The energy calculation result revealed that 15-TCG is the best ligand of the HIV PPT duplex. The comparative analysis of energies of the conjugated TBTs provides directive significance for designing ODN strand that is easy to form triplex in theory. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The emission wavelength of a GaInNAs quantum well (QW) laser was adjusted to 1310 nm, the zero dispersion wavelength of optical fibre, by an appropriate choice of QW composition and thickness and N concentration in the barriers. A triple QW design was employed to enable the use of a short cavity with a small photon lifetime while having sufficient differential gain for a large modulation bandwidth. High speed, ridge waveguide lasers fabricated from high quality material grown by molecular beam epitaxy exhibited a damped modulation response with a bandwidth of 13 GHz.
Resumo:
A transmission electron microscopy study of triple-ribbon contrast features in a ZnTe layer grown epitaxially on a vicinal GaAs (001) substrate is reported. The ribbons go through the layer as threading dislocations near the [<(11)over bar 2>](111) or [112](<(11)over bar 1>) directions. Each of these (with a 40 nm width) has two narrow parts enclosed by three partial dislocations (with a 20 nm spacing). By contrast analysis and contrast simulation, the ribbons have been shown to be composed of two partially overlapping stacking faults. Their origin is attributed to a forced reaction between two crossing perfect misfit dislocations.
Resumo:
For a triangular triple quantum dots (TTQDs) ring with three terminals, when lowering one of the dot-lead coupling to realize the left-right (L-R) reflection symmetry coupling, the internal C-upsilon of the TTQDs is well preserved in the absence of many-body effect for the symmetric distribution of the dot-lead coupling on the molecular orbits. In the presence of Kondo effect, the decrement of one of the dot-lead couplings suppresses the inter-dot hopping. This happens especially for the coupled quantum dot (QD), which decouples with the other two ones gradually to form a localized state near the Fermi level As a result, the internal dynamic symmetry of the TTQDs ring is reduced to L-R reflection symmetry, and simultaneously, the linear conductance is lifted for the new forming molecular orbit near the Fermi level
Resumo:
Multi-channel effect is important to understand transport phenomenon in phase change systems with parallel channels. In this paper, visualization studies were performed to study the multi-channel effect in a silicon triple-channel condenser with an aspect ratio of 0.04. Saturated water vapor was pumped into the microcondenser, which was horizontally positioned. The condenser was cooled by the air natural convention heat transfer in the air environment. Flow patterns are either the annular flow at high inlet vapor pressures, or a quasi-stable elongated bubble at the microchannel upstream followed by a detaching or detached miniature bubble at smaller inlet vapor pressures. The downstream miniature bubble was detached from the elongated bubble tip induced by the maximum Weber number there. It is observed that either a single vapor thread or dual vapor threads are at the front of the elongated bubble. A miniature bubble is fully formed by breaking up the vapor thread or threads. The transient vapor thread formation and breakup process is exactly symmetry against the centerline of the center channel. In side channels, the Marangoni effect induced by the small temperature variation over the channel width direction causes the vapor thread formation and breakup process deviating from the side channel centerline and approaching the center channel. The Marangoni effect further forces the detached bubble to rotate and approach the center channel, because the center channel always has higher temperatures, indicating the multi-channel effect.
Resumo:
Compact and efficient triple-pass optical parametric chirped pulse amplification in a single crystal has been demonstrated. The signal was triple-pass amplified in a single nonlinear crystal by a nanosecond pump pulse. The first-pass optical parametric amplification is completely phase matched in the plane of the maximum effective nonlinearity, and the other two passes work symmetrically near to the first-pass optical parametric amplification plane. This architecture efficiently increases the overall gain, overcomes the optical parametric fluorescence, and clearly simplifies the amplification scheme.
Resumo:
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOI).Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure,which boosts the modulation efficiency compared with a single MOS capacitor.The simulation results demonstrate that the VπLπ product is 2.4V·cm.The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve,respectively,indicating a bandwidth of 8GHz.The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
Resumo:
The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co2+ and Ni2+, significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba2+ is notably beneficial to the formation of homodimer instead of triplex.