246 resultados para Transparent conducting oxides

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide doped beta-Ga2O3 single crystals are recognized as transparent conductive oxides (TCOs) materials. They have a larger band gap (4.8 eV) than any other TCOs, thus can be transparent in UV region. This property shows that they have the potential to make the optoelectronic device used in even shorter wavelength than usual TCOs. beta-Ga2O3 single crystals doped with different Sn4+ concentrations were grown by the floating zone technique. Their optical properties and electrical conductivities were systematically studied. It has been found that their conductivities and optical properties were influenced by the Sn4+ concentrations and annealing. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles methods we have calculated electronic structures, optical properties, and hole conductivities of CuXO2 (X=Y, Sc, and Al). We show that the direct optical band gaps of CuYO2 and CuScO2 are approximately equal to their fundamental band gaps and the conduction bands of them are localized. The direct optical band gaps of CuXO2 (X=Y, Sc, and Al) are 3.3, 3.6, and 3.2 eV, respectively, which are consistent with experimental values of 3.5, 3.7, and 3.5 eV. We find that the hole mobility along long lattice c is higher than that along other directions through calculating effective masses of the three oxides. By analyzing band offset we find that CuScO2 has the highest valence band maximum (VBM) among CuXO2 (X=Y, Sc, and Al). In addition, the approximate transitivity of band offset suggests that CuScO2 has a higher VBM than CuGaO2 and CuInO2 [Phys. Rev. Lett. 88, 066405 (2002)]. We conclude that CuScO2 has a higher p-type doping ability in terms of the doping limit rule. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2991157]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed ionic-electronic conducting (MIEC) oxides, SrFeCo0.5Ox, SrCo0.8Fe0.2O3-delta and La0.6Sr0.4Fe0.8Co0.2O3-delta have been synthesized and prepared on yttria-stabilized zirconia as anodes for solid oxide fuel cells. Power output measurements show that the anodes composed of such kinds of oxides exhibit modest electrochemical activities to both H-2 and CH4 fuels, giving maximum power densities of around 0.1 W/cm(2) at 950 degrees C. Polarization and AC impedance measurements found that large activation overpotentials and ohmic resistance drops were the main causes for the relative inferior performance to the Ni-YSZ anode. While interlayered with an Ni-YSZ anode, a significant improvement in the electrochemical performance was observed. in particular, for the SrFeCo0.5Ox oxide interlayered Ni-YSZ anode, the maximum power output reaches 0.25 W/cm2 on CH,, exceeding those of both SrFeCo0.5Ox and the Ni-YSZ, as anodes alone. A synergetic effect of SrFeCo0.5Ox and the Ni-YSZ has been observed. Future work is needed to examine the long-term stability of MIEC oxide electrodes under a very reducing environment. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

本文对β-Ga2O3单晶体的研究情况进行了综合,主要介绍了β-Ga2O3单晶体的生长方法:Verneuil法、提拉法和浮区法生长技术,并简单介绍了β-Ga2O3单晶体的光学和电学性质及其在GaN衬底方面的应用。β-Ga2O3单晶体的优异性质使其可以成为新一代的透明导电材料。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the first-principles methods, we study the electronic structure, intrinsic and extrinsic defects doping in transparent conducting oxides CuGaO2. Intrinsic defects, acceptor-type and donor-type extrinsic defects in their relevant charge state are considered. The calculation result show that copper vacancy and oxygen interstitial are the relevant defects in CuGaO2. In addition, copper vacancy is the most efficient acceptor. Substituting Be for Ga is the prominent acceptor, and substituting Ca for Cu is the prominent donors in CuGaO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials in CuGaO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using first-principles methods, we studied the extrinsic defects doping in transparent conducting oxides CuMO2 (M=Sc, Y). We chose Be, Mg, Ca, Si, Ge, Sn as extrinsic defects to substitute for M and Cu atoms. By systematically calculating the impurity formation energy and transition energy level, we find that Be-Cu is the most prominent extrinsic donor and Ca-M is the prominent extrinsic acceptor. In addition, we find that Mg atom substituting for Sc is the most prominent extrinsic acceptor in CuSCO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials through extrinsic doping in CuMO2 (M=SC, y). (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new series of mixed conducting oxides, Sr10-n/2BinFe20Om (n = 4, 6, 8, 10), were synthesized by a solid state reaction method, and they have high oxygen permeability. The oxygen permeation rate at 1150 K is 0.41 ml(STD)/ cm(2).min for n = 6 and 0.90 ml(STD)/cm(2).min for n = 10, which is two times higher than that for Sr1-xBixFeO3 (x = 0.5). For the Sr1-xBixFeO3 (x = 0.1, 0.3, 0.5) series, the oxygen flux increases with increasing Bi content. (C) 1998 Elsevier Science Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

透明导电氧化物(TCO)材料由于它的特殊性质,在平板显示器和太阳能电池等方面得到了广泛的应用。MgIn2O4作为一种新型的尖晶石结构的透明导电材料,也受到了研究人员的重视,成为近年来的研究热点,常用的MgIn2O4材料制备方法包括固相合成、磁控溅射、脉冲激光沉积等,本文综合国外学者的一些研究成果,介绍了目前MgIn2O4材料的制备方法及其性能提高和应用。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper studies the electronic structure and native defects intransparent conducting oxides CuScO2 and CuYO2 using the first-principle calculations. Some typical native copper-related and oxygen-related defects, such as vacancy, interstitials, and antisites in their relevant charge state are considered. The results of calculation show that, CuMO2 (M = Sc, Y) is impossible to shown-type conductivity ability. It finds that copper vacancy and oxygen interstitial have relatively low formation energy and they are the relevant defects in CuScO2 and CuYO2. Copper vacancy is the most efficient acceptor, and under O-rich condition oxygen antisite also becomes important acceptor and plays an important role in p-type conductivity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We studied the effects of hydrogen plasma treatment on the electrical and optical properties of ZnO films deposited by radio frequency magnetron sputtering. It is found that the ZnO H film is highly transparent with the average transmittance of 92% in the visible range. Both carrier concentration and mobility are increased after hydrogen plasma treatment, correspondingly, the resistivity of the ZnO H films achieves the order of 10(-3) cm. We suggest that the incorporated hydrogen not only passivates most of the defects and/or acceptors present, but also introduces shallow donor states such as the V-O-H complex and the interstitial hydrogen H-i. Moreover, the annealing data indicate that H-i is unstable in ZnO, while the V-O-H complex remains stable on the whole at 400 degrees C, and the latter diffuses out when the annealing temperature increases to 500 degrees C. These results make ZnO H more attractive for future applications as transparent conducting electrodes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed X-ray photoelectron spectroscopy (XPS) depth profiling measurements were performed across the back n-layer/transparent conducting oxide (n/TCO) inter-faces for superstrate p-i-n solar cells to examine differences between amorphous silicon (a-Si:H) and microcrystalline silicon (mu c-Si:H) n-layer materials as well as TCO materials ZnO and ITO in the chemical, microstructural and diffusion properties of the back interfaces. No chemical reduction of TCO was found for all variations of n-layer/TCO interfaces. We found that n-a-Si:H interfaces better with ITO, while n-mu c-Si:H, with ZnO. A cross-comparison shows that the n-a-Si:H/ITO interface is superior to the n-mu c-Si:H/ZnO interface, as evidenced by the absence of oxygen segregation and less oxidized Si atoms observed near the interface together with much less diffusion of TCO into the n-layer. The results suggest that the n/TCO interface properties are correlated with the characteristics of both the n-layer and the TCO layer. Combined with the results reported on the device performance using similar back n/TCO contacts, we found the overall device performance may depend on both interface and bulk effects related to the back n/TCO contacts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report a radio frequency magnetron sputtering method for producing TiO2 shell coatings directly on the surface of ZnO nanorod arrays. ZnO nanorod arrays were firstly fabricated on transparent conducting oxide substrates by a hydrothermal route, and subsequently decorated with TiO2 by a plasma sputtering deposition process. The core/shell nanorods have single-crystal ZnO cores and anatase TiO2 shells. The shells are homogeneously coated onto the whole ZnO nanorods without thickness change. This approach enables us to tailor the thickness of the TiO2 shell for desired photovoltaic applications on a one-nanometer scale. The function of the TiO2 shell as a blocking layer for increasing charge separation and suppression of the surface recombination was tested in dye-sensitized solar cells. The enhanced photocurrent and open-circuit voltage gave rise to increased photovoltaic efficiency and decreased dark current, indicating successful functioning of the TiO2 shell.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Novel mixed conducting oxides, B-site Bi-doped perovskites were exploited and synthesized. Cubic perovskite structures were formed for BaBi0.2COyFe0.8-yO3-delta (y less than or equal to 0.4) and BaBixCo0.2Fe0.8-xP3-delta (x=0.1-0.5) The materials exhibited considerable high oxygen permeability at high temperature. The oxygen permeation flux of BaBi0.2Co0.35Fe0.45O3-delta membrane reached about 0.77 x 10(-6) mol/cm(2) s under an air/helium oxygen partial pressure gradient at 900 degrees C, which was much higher than that of other bismuth-contained mixed conducting membranes. The permeation fluxes of the materials increased with the increase of cobalt content, but no apparent simple relationship was found with the bismuth content. The materials also demonstrated excellent reversibility of oxygen adsorption and desorption. Stable time-related oxygen permeation fluxes were found for BaBi0.2CO0.35Fe0.45O3-delta and BaBi0.3Co0.2Fe0.5O3-delta a membranes at 875 degrees C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La0.15Sr0.85Ga0.3Fe0.7O3-delta (LSGFO) and La0.15Sr0.85Co0.3Fe0.7O3-delta (LSCFO) mixed oxygen-ion and electron conducting oxides were synthesized by using a combined EDTA and citrate complexing method, and the corresponding dense membranes were fabricated. The properties of the oxide powders and membranes were characterized with combined SEM, XRD, H-2-TPR, O-2-TPD techniques, mechanical strength and oxygen permeation measurement. The results showed that LSGFO had much higher thermochemical stability than LSCFO due to the higher valence stability of Ga3+. After the temperature-programmed reduction by 5% H-2 in Ar from 20 degreesC to 1020 degreesC, the basic perovskite structure of LSGFO was successfully preserved. LSGFO also favors the oxygen vacancy formation better than LSCFO. Oxygen permeation measurement demonstrated that LSGFO had higher oxygen permeation flux than LSCFO, but they had similar activation energy for oxygen transportation, with a value of 110 and 117 kJ . mol(-1), respectively The difference in oxygen permeation fluxes was correlated with the difference in oxygen vacancy concentrations for the two materials.