96 resultados para The Pockel’s effect,
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Six-period 4 nm GaN/10 nm AlxGa1-xN superlattices with different Al mole fractions x were prepared on (0001) sapphire substrates by low-temperature metal-organic chemical vapor deposition. The linear electro-optic (Pockels) effect was studied by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The measured electro-optic coefficients, gamma(13)=5.60 +/- 0.18 pm/V, gamma(33)=19.24 +/- 1.21 pm/V (for sample 1, x=0.3), and gamma(13)=3.09 +/- 0.48 pm/V, gamma(33)=8.94 +/- 0.36 pm/V (for sample 2, x=0.1), respectively, are about ten times larger than those of GaN bulk material. The enhancement effect in GaN/AlxGa1-xN superlattice can be attributed to the large built-in field at the interfaces, depending on the mole fraction of Al. (C) 2007 American Institute of Physics.
Resumo:
The linear electro-optic (Pockels) effect of wurtzite gallium nitride (GaN) films and six-period GaN/AlxGa1-xN superlattices with different quantum structures were demonstrated by a polarization-maintaining fiber-optical Mach-Zehnder interferometer system with an incident light wavelength of 1.55 mu m. The samples were prepared on (0001) sapphire substrate by low-temperature metalorganic chemical vapor deposition (MOCVD). The measured coefficients of the GaN/AlxGa1-xN superlattices are much larger than those of bulk material. Taking advantage of the strong field localization due to resonances, GaN/AlxGa1-xN SL can be proposed to engineer the nonlinear responses.
Resumo:
Capillary forces are significantly dominant in adhesive forces measured with an atomic force microscope (AFM) in ambient air, which are always thought to be dependent on water film thickness, relative humidity, and the free energy of water film. We study the nature of the pull-off force on a variety of surfaces as a function of tip velocity. It is found that the capillary forces are of relatively strong dependence on tip velocity. The present experiment is expected to provide a better understanding of the work mechanism of AFM in ambient air.
Resumo:
We report our observation of a bleaching effect under an ultraviolet exposure in LiNbO3:Fe:Cu crystals. Two three-step recording-transferring-fixing schemes are proposed to record nonvolatile photorefractive holograms in such crystals. In the schemes two red laser beams and an ultraviolet illumination are used selectively to write the charge grating in the shallow-level Fe centers, to develop the charge grating in the deep-level Cu centers by transferring the charge grating in the Fe centers, and to fix only the charge grating in the Cu centers for unerasable read-out. Experimental results, verifications, and an optimal recording scheme are given. A comparison of the lithium niobate crystals of the same double-doping system of Fe:Mn, Ce:Mn, Ce:Cu, and Fe:Cu is outlined. (C) 2002 Optical Society of America.
Resumo:
The Talbot effect is one of the most basic optical phenomena that has received extensive investigations both because its new results provide us more understanding of the fundamental Fresnel diffraction and also because of its wide applications. We summarize our recent results on this subject. Symmetry of the Talbot effect, which was reported in Optics Communications in 1995, is now realized as the key to reveal other rules for explanation of the Talbot effect for array illumination. The regularly rearranged-neighboring-phase-differences (RRNPD) rule, a completely new set of analytic phase equations (Applied Optics, 1999), and the prime-number decomposing rule (Applied Optics, 2001) are the newly obtained results that reflect the symmetry of the Talbot effect in essence. We also reported our results on the applications of the Talbot effect. Talbot phase codes are the orthogonal codes that can be used for phase coding of holographic storage. A new optical scanner based on the phase codes for Talbot array illumination has unique advantages. Furthermore, a novel two-layered multifunctional computer-generated hologram based on the fractional Talbot effect was proposed and implemented (Optics Letters, 2003). We believe that these new results should bring us more new understanding of the Talbot effect and help us to design novel optical devices that should benefit practical applications. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Experimental results of the Talbot effect of an amplitude grating under femtosecond laser illumination are reported. Compared with Talbot image under continuous wave (CW) illumination, Talbot images under femtosecond laser illumination are different due to the wide spectral bandwidth and the Talbot images are more distorted at longer Talbot distances. The spectrums and the pulsewidths of femtosecond laser pulses are measured with the frequency-resolved optical gating (FROG) apparatus. Experimental results are in good agreement with the theoretical analysis. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Experimental investigation of Talbot self-imaging effect of an amplitude grating under illumination of femtosecond laser pulse -- the FemtoTalbot effect is reported. Theoretical analyzed results show that Talbot images under illumination of femtosecond laser pulses are not the same as that under continuous wave illumination. Experimental results are in good agreement with the theoretical analysis. We believe that the experimental investigation of the FemtoTalbot effect is highly interesting for the enormous potential applications of Talbot effect.
Resumo:
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2 alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2 alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2 alpha. The interaction between PoPKR and eIF2 alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2 alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.
Resumo:
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P (m)) and the growth rate constant (k) were determined, which showed that values of P (m) and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.
Resumo:
We investigate theoretically the Hartman effect in quantum tunneling through single and double barriers in a single graphene layer. The numerical results indicate that the Hartman effect in graphene depends heavily on the incident angle and the energy of the carrier in the tunneling process through single and double barriers. We find that the Hartman effect disappears for normal incidence and appears when the incident angle and energy are larger than some critical values.
Resumo:
Spin-dependent tunneling through a symmetric semiconductor barrier is studied including the k(3) Dresselhaus effect. The spin-dependent transmission of an electron can be obtained analytically. By comparing with previous work [Phys. Rev. B 67, 201304(R) (2003) and Phys. Rev. Lett. 93, 056601 (2004)], it is shown that the spin polarization and interface current are changed significantly by including the off-diagonal elements in the current operator, and can be enhanced considerably by the Dresselhaus effect in the contact regions.
Resumo:
The Stark effect on excitons in a bilayer system is investigated theoretically within the framework of the effective-mass approximation. The calculations indicate that the energy of the excitons decreases as the value of the in-plane electric field F increases at a fixed value of the distance d between the layers. However, the energy of the excitons increases with d at a fixed value of F. In particular, it increases linearly at small values of d but increases as 1/d at large values. Therefore, it can be concluded that excitons in a bilayer system have a small binding energy equal to the absolute value of the excitonic energy at large d or small F. In addition, the radiative lifetime of heavy-hole excitons in this system is calculated and is found to be short at small values of both F and d. The radiative lifetime of heavy-hole excitons in a bilayer system can be increased by two orders by an in-plane electric field of 2 kV/cm when d is twice the excitonic Rydberg. (c) 2006 American Institute of Physics.
Resumo:
Performing an event-based continuous kinetic Monte Carlo simulation, we investigate the modulated effect induced by the dislocation on the substrate to the growth of semiconductor quantum dots (QDs). The relative positions between the QDs and the dislocations are studied. The stress effects to the growth of the QDs are considered in simulation. The simulation results are compared with the experiment and the agreement between them indicates that this simulation is useful to study the growth mode and the atomic kinetics during the growth of the semiconductor QDs. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Thermal annealing of GaInAs/GaNAs quantum wells (QWs) as well as other nitrogen- and indium-contained QW structures grown by molecular beam epitaxy and its effect on optical properties are investigated. The photoluminescence (PL) and photovoltaic (PV) spectra of annealed GaInAs/GaNAs QWs show that the luminescence properties become degraded due to the N diffusion from the GaNAs barrier layers to the GaInAs well layer. Meantime, the annealing-induced blueshift of the PL peak in this QW system is mainly induced by the change of In distribution, suggesting that the In reorganization is greatly assisted by the N-induced defects. The elucidation of annealing effect in GaInAs/GaNAs QW samples is helpful for a better understanding to the annealing effect in the GaInNAs/GaAs QWs. (C) 2003 Elsevier Science B.V. All rights reserved.