93 resultados para Stranski-Krastanow growth mode

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs self-organized nanostructures were grown with variant deposition thickness and growth rate on closely matched InAlAs/InP by molecular-beam epitaxy. The structural properties. of InAs and InAlAs layer were studied. It is found that the InAs morphology is insensitive to the growth conditions. Transmission electron microscopy and reflectance difference spectroscopy measurements show that the InAlAs matrix presents lateral composition modulation which gives birth to surface anisotropy. Based on the dependence of the InAs morphology on the anisotropy of the InAlAs layer, a modified Stranski-Krastanow growth mode is presented to describe the growth of the nanostructure on a composition-modulated surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method is realized for the growth of self-formed quantum dots. We identify that dislocation-free islands can be formed by the strain from the strained superlattice taken as a whole. Unlike the Stranski-Krastanow (S-K) growth mode, the islands do not form during the growth of the corresponding strained single layers. Highly uniform quantum dots can be self-formed via this mechanism. The low temperature spectra of self-formed InGaAs/GaAs quantum dot superlattices grown on a (001) GaAs substrate have a full width at half maximum of 26-34 meV, indicating a better uniformity of quantum dot size than those grown in the S-K mode. This method can provide great degrees of freedom in designing possible quantum dot devices. 1998 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organized In0.55Al0.45As/Al0.50Ga0.50As quantum dots are grown by the Stranski-Krastanow growth mode using molecular beam epitaxy on the GaAs(311)A substrate. The optical properties of type-II InAlAs/AlGaAs quantum dots have been demonstrated by the excitation power and temperature dependence of photoluminescence spectra. A simple model accounting for the size-dependent band gap of quantum dots is given to qualitatively understand the formation of type-II In0.55Al0.45As/Al0.50Ga0.50As quantum dots driven by the quantum-confinement-induced Gamma --> X transition. The results provide new insights into the band structure of InAlAs/AlGaAs quantum dots. (C) 2000 American Institute of Physics. [S0003-6951(00)00725-7].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs and In0.9Al0.1As self-assembled quantum dots have been grown by Stranski-Krastanow growth mode on In0.52Al0.48As lattice-matched on (0 0 1)InP substrates by MBE. The ternary In0.9Al0.1As dots on InP was demonstrated for the first time. The structural and optical properties were characterized using TEM and PL, respectively. Experimental results show that, a larger critical thickness is required for In0.9Al0.1As dots formation than for InAs dots, the In0.9Al0.1As dots show larger sizes and less homogeneity; some ordering in alignment can be observed in both InAs and In0.9Al0.1As dots, and In0.9Al0.1As dots give narrower luminescence than InAs dots. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs quantum dots grown on InAlAs lattice-matched to (0 0 1) InP substrates by molecular beam epitaxy are investigated by double-crystal X-ray diffraction, photoluminescence and transmission electron microscopy. The growth process is found to follow the Stranski-Krastanow growth mode. The islands formation is confirmed by the TEM measurements. Strong radiative recombination from the quantum dots and the wetting layer is observed, with room temperature PL emission in the 1.2-1.7 mu m region, demonstrating the potential of the InAs/InAlAs QDs for optoelectronic device applications. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Illustrated in this paper are two examples of altering planar growth into self-assembled island formation by adapting experimental conditions. Partial oxidation, undersaturated solution and high temperature change Frank-Van der Merwe (FM) growth of Al0.3Ga0.7As in liquid phase epitaxy (LPE) into isolated island deposition. Low growth speed, high temperature and in situ annealing in molecular beam epitaxy (MBE) cause the origination of InAs/GaAs quantum dots (QDs) to happen while the film is still below critical thickness in Stranski-Krastanow (SK) mode. Sample morphologies are characterized by scanning electron microscopy (SEM) or atomic force microscopy (AFM). It is suggested that such achievements are of value not only to fundamental researches but also to spheres of device applications as well. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial growth of InN on GaN(0001) by plasma-assisted molecular-beam epitaxy is investigated over a range of growth parameters including source flux and substrate temperature. Combining reflection high-energy electron diffraction (RHEED) and scanning tunneling microscopy (STM), we establish a relationship between film growth mode and the deposition condition. Both two-dimensional (2D) and three-dimensional (3D) growth modes of the film are observed. For 2D growth, sustained RHEED intensity oscillations are recorded while STM reveals 2D nucleation islands. For 3D growth, less than three oscillation periods are observed indicating the Stranski-Krastanov (SK) growth mode of the film. Simultaneous measurements of (reciprocal) lattice constant by RHEED suggest a gradual relaxation of the strain in film, which commences during the first bilayer (BL) deposition and almost completes after 2-4 BLs. For SK growth, 3D islanding initiates after the strain has mostly been relieved, presumably by dislocations, so the islands are likely strain free. (C) 2002 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Growth mode and strain relaxation of molecular-beam-epitaxy grown InAs/InAlAs/InP (111)A system have been investigated using reflection high-energy electron diffraction, transmission electron microscopy, atomic force microscopy, and photoluminescence measurements. In direct contrast to the well-studied InAs/GaAs system, our experimental results show that the InAs grown on InAlAs/InP (111)A follows the Stranski-Krastanov mode. Both self-organized InAs quantum dots and relaxed InAs islands are formed depending on the InAs coverage. Intense luminescence signals from both the InAs quantum dots and wetting layer are observed. The luminescence efficiency of (111)A samples is comparable to that of (001) samples, suggesting the feasibility of fabricating quantum dot optoelectronic devices on InP (111)A surfaces. (C) 1999 American Institute of Physics. [S0003-6951(99)01010-4].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We grow InN epilayers on different interlayers by metal organic vapour phase epitaxy (MOVPE) method, and investigate the effect of interlayer on the properties and growth mode of InN films. Three InN samples were deposited on nitrided sapphire, low-temperature InN (LT-InN) and high-temperature GaN (HT-GaN), respectively. The InN layer grown directly on nitrided sapphire owns the narrowest x-ray diffraction rocking curve (XRC) width of 300 arcsec among the three samples, and demonstrates a two-dimensional (2D) step-flow-like lateral growth mode, which is much different from the three-dimensional (3D) pillar-like growth mode of LT-InN and HT-GaN buffered samples. It seems that mismatch tensile strain is helpful for the lateral epitaxy of InN film, whereas compressive strain promotes the vertical growth of InN films.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some differences were observed between conventional molecular-beam epitaxy (MBE) and mobility enhanced epitaxy (MEE) of InAs on a vicinal GaAs(001) substrate in the variation of the number density N of the InAs islands, with additional InAs coverage (theta - theta(c)) after the critical InAs coverage theta(c) during the two- to three-dimensional (2D-3D) transition. For MBE the variation was consistent with the power law N(theta) (theta similar to theta(c))(alpha); while for MEE, the linear relation N(theta) proportional to (theta - theta(c)) was observed. The difference is discussed in terms of the randomness in the nucleation of the InAs islands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed observation was made using atomic force microscopy on the two- to three-dimensional (2D-3D) growth mode transition in the molecular-beam epitaxy of InAs/GaAs(001). The evolution of the 3D InAs islands during the 2D-3D mode transition was divided into two successive phases. The first phase may be explained in terms of a critical phenomenon of the second-order phase transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled Si/Ge dot multilayers with small, uncorrelated dots fabricated by molecular beam epitaxy in the Stranski-Krastanov growth mode are studied by Raman scattering of folded longitudinal acoustic (FLA) modes. The FLA Raman spectra are analyzed and modeled with respect to mode frequencies and the spectral envelope of mode intensities. The deduced average superlattice properties are consistent with results from atomic force microscopy. The simple Rytov model used for Si/Ge layer structures reproduces very well the frequencies of the FLA modes up to 150 cm(-1). The nonlinearity of phonon dispersion curves in bulk Si for large momenta, however, becomes important for modeling the higher frequencies of observed FLA modes up to 22nd order. The effective dot layer width and an activation energy for thermal intermixing of 2.1+/-0.2 eV are determined from the spectral envelopes of FLA mode intensities of as-grown and annealed Si/Ge dot multilayers. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extremely low density InAs quantum dots (QDs) are grown by molecular beam droplet epitaxy, The gallium deposition amount is optimized to saturate exactly the excess arsenic atoms present on the GaAs substrate surface during growth, and low density InAs/GaAs QDs (4x10(6) cm(-2)) are formed by depositing 0.65 monolayers (ML) of indium. This is much less than the critical deposition thickness (1.7 ML), which is necessary to form InAs/GaAs QDs with the conventional Stranski-Krastanov growth mode. The narrow photoluminescence line-width of about 24 meV is insensitive to cryostat temperatures from 10 K to 250 K. All measurements indicate that there is no wetting layer connecting the QDs.