47 resultados para Storage Properties
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
By sensitizing with 514 nm green light, 488 nm blue light and 390 nm ultraviolet light, respectively, recording with 633 nm red light, effect of wavelength of sensitizing light on holographic storage properties in LiNbO3:Fe:Ni crystal is investigated in detail. It is shown that by shortening the wavelength of sensitizing light gradually, nonvolatile holographic recording properties of oxidized LiNbO3:Fe:Ni crystal is optimized gradually, 390 nm ultraviolet light is the best as the sensitizing light. Considering the absorption of sensitizing light, to obtain the best performance in two-center holographic recording we must choose a sensitizing wavelength that is long enough to prevent unwanted absorptions (band-to-band, etc.) and short enough to result in efficient sensitization from the deep traps. So in practice a trade-off is always needed. Explanation is presented theoretically. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
Well-defined 3D Fe3S4 flower-like microspheres were synthesized via a simple biomolecule-assisted hydrothermal process for the first time. On the basis of a series of contrast experiments, the probable growth mechanism and fabrication process of the products were proposed. The electrical conductivity property of the as-synthesized Fe3S4 sample exhibited a rectifying characteristic when a forward bias was applied for the bottom-contacted device. The magnetic properties of the products were studied as well and the results demonstrated that the products presented ferromagnetic properties related to the corresponding microstructure. In addition, we first verified that the Fe3S4 flower-like microspheres could store hydrogen electrochemically, and a discharge capacity of 214 mA h g(-1) was measured without any activation under normal atmospheric conditions at room temperature.
Resumo:
Samarium and manganese co-doped zinc borosilicate storage glasses were prepared by high temperature solid state method. The effect of doping samarium on the defect of Mn activated sample was studied by means of thermoluminescence spectra. It was found that the shallower traps of the sample predominate with the addition of samarium, as a result, the phosphorescence and storage properties of the manganese doped zinc borosilicate glasses were greatly changed.
Resumo:
采用三种不同的双光记录方案进行了LiNbO3:Fe:Ni晶体全息存储实验.详细研究了饱和衍射效率、固定衍射效率、动态范围和记录灵敏度,以及退火条件对记录的影响。结果表明,氧化LiNbO3:Fe:Ni晶体的饱和衍射效率、固定衍射效率和记录灵敏度比其他报道的双掺杂LiNbO3晶体高。结合掺杂能级图,理论分析了LiNbO3双掺杂晶体深陷阱中心能级的相对位置及其微观光学参量对全息记录性能的影响。LiNbO3:Fe:Ni晶体有望成为一种新的高效率非挥发全息存储材料。
Resumo:
分别采用514nm绿光、488nm蓝光和390nm紫外光作为敏化光,633nm红光作为记录光,详细研究了敏化光波长对氧化(Fe,Ni):LiNbO3晶体全息记录性能的影响。结果表明:随着敏化光波长的逐渐减小,氧化(Fe,Ni):LiNbO3晶体的非挥发全息记录性能逐渐优化,390nm紫外光是这三种敏化光中最优的敏化光。考虑敏化光的吸收,为了在双中心全息记录中获得最优的性能,应当选择合适波长的敏化光:一方面短波长敏化光能有效地敏化深中心;另一方面短波长敏化光的吸收太强(如对光折变效应无用的基质吸收),不能沿
Resumo:
WE have designed a dual-beam magneto-optical (MO) storage system to test the dynamic storage properties of MO disks. The characteristics of this dual-beam system are demonstrated. Magnetic field modulated direct overwrite, which is a promising technique for highspeed MO storage, is realized on TbFeCo MO disks with this dual-beam MO system. The effect of light intensity, magnetic field intensity, and linear velocity of the disk and the modulating frequency variation on carrier-to-noise ratio is investigated. (C) 1997 Society of Photo-Optical Instrumentation Engineers.
Resumo:
研究了单体及粘结剂等成份对全息光致聚合物薄膜光存储性能的影响。在相同引发条件下.以丙烯酰胺作为单体时,光聚物的衍射效率明显高于以丙烯酸和N羟甲基丙烯酰胺作为单体时光聚物的衍射效率。向丙烯酰胺中加入少量N-羟甲基丙烯酰胺,可以改善膜表面的光学质量.降低散射光强度,并提高膜的保存时间。在聚乙烯醇膜中单体聚合程度明显优于在聚乙烯吡咯烷酮中的程度,在大分子量的聚乙烯醇中的衍射效率及感光灵敏度高于在小分子量中的衍射效率和感光灵敏度,而且大分子量的聚乙烯醇能够制备厚膜,这是实现全息海量存储的一个重要因素。
Resumo:
In this paper the magnetic and magneto-optical properties of amorphous rare earth-transition metal (RE-TM) alloys as well as the magnetic coupling in the multi-layer thin films for high density optical data storage are presented. Using magnetic effect in scanning tunneling microscopy the clusters structure of amorphous RE-TM thin films has been observed and the perpendicular magnetic anisotropy in amorphous RE-TM thin films has been interpreted. Experimental results of quick phase transformation under short pulse laser irradiation of amorphous semiconductor and metallic alloy thin films for phase change optical recording are reported. A step-by-step phase transformation process through metastable states has been observed. The waveform of crystallization propagation in micro-size spot during laser recording in amorphous semiconductor thin films is characterized and quick recording and erasing mechanism for optical data storage with high performance are discussed. The nonlinear optical effects in amorphous alloy thin films have been studied. By photo-thermal effect or third order optical nonlinearity, the optical self-focusing is observed in amorphous mask thin films. The application of amorphous thin films with super-resolution near field structure for high-density optical data storage is performed. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The time response of optical switching properties of Sb thin films under focused laser pulses is investigated. The results show that the response course can be divided into onset, opening, and closing stages. Formulas for their lengths are given. The onset and opening times decrease with increasing pumping light power density. The closing time is about 150 ns. For optical memory, if the power density of the readout and recording lasers changes from 5 x 10(9) to 15 x 10(9) W/m(2), the onset time changes from 2.5 to 0.30 mus, and the opening time is on the nanosecond scale. (C) 2003 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel azo dye containing isoxazole ring and beta-diketone derivative (TIAD) and its two nickel (II) complexes (Ni (II)-ETIAD and Ni (II)-HTIAD) were synthesized in order to obtain a blue-violet light absorption and better thermal stability as a promising organic storage material for next generation of high density digital versatile disc-recordable (HD-DVD-R) systems that uses a high numerical aperture of 0.85 at 405 nm wavelength. Their structures were confirmed on the basis of elemental analysis, MS, FT-IR, UV-Vis and magnetic data. Their solubility in 2,2,3,3-tetrafluoro-1-propanol (TFP) and absorption properties of thin film were measured. The difference of absorption maximum from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The dependence of thermal properties of Ag8In14Sb55Te23 phase-change memory materials in crystalline and amorphous states on temperature was measured and analyzed. The results show that in the crystalline state, the thermal properties monotonically decrease with the temperature and present obvious crystalline semiconductor characteristics. The heat capacity, thermal diffusivity, and thermal conductivity decrease from 0.35 J/g K, 1.85 mm(2)/s, and 4.0 W/m K at 300 K to 0.025 J/g K, 1.475 mm(2)/s, and 0.25 W/m K at 600 K, respectively. In the amorphous state, while the dependence of thermal properties on temperature does not present significant changes, the materials retain the glass-like thermal characteristics. Within the temperature range from 320 K to 440 K, the heat capacity fluctuates between 0.27 J/g K and 0.075 J/g K, the thermal diffusivity basically maintains at 0.525 mm(2)/s, and the thermal conductivity decreases from 1.02 W/m K at 320 K to 0.2 W/m K at 440 K. Whether in the crystalline or amorphous state, Ag8In14Sb55Te23 are more thermally active than Ge2Sb2Te5, that is, the Ag8In14Sb55Te23 composites bear stronger thermal conduction and diffusion than the Ge2Sb2Te5 phase-change memory materials.