23 resultados para SiO(2)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Ecological responses to dam construction are poorly understood, especially for downstream benthic algal communities. We examined the responses of benthic algal communities in downstream reaches of a tributary of the Xiangxi River, China, to the construction of a small run-of-river dam. From February 2003 to August 2006, benthic algae, chemical factors, and habitat characteristics were monitored upstream and downstream of the dam site. This period spanned 6 mo before dam construction and 37 mo after dam construction. Benthic algal sampling yielded 199 taxa in 59 genera that belonged to Bacillariophyta, Chlorophyta, and Cyanophyta. Some physical factors (flow velocity, water depth, and channel width) and 3 algal metrics (diatom species richness, Margalef diversity, and % erect individuals) were significantly affected by the dam construction, whereas chemical factors (e.g., NH4-N, total N, SiO2) were not. Nonmetric multidimensional scaling (NMS) ordinations showed that overall algal assemblage structure downstream of the dam sites was similar to that of upstream control sites before dam construction and for 1 year after dam construction (p > 0.05). However, sites belonging to upstream and downstream reaches were well separated on NMS axis 1 during the 2(nd) and 3(rd) years after dam construction. Our results suggest that impacts of dam construction on benthic algal communities took 2 to 3 y to emerge. Further development of a complete set of indicators is needed to address the impact of small-dam construction. Our observations underscore the need for additional studies that quantify ecological responses to dam construction over longer time spans.
Resumo:
该工作制备了一系列新型载体负载茂锆催化剂,其载体涉及到功能化无机-聚合物复合材料、功能化多孔聚合物材料和功能化无机材料.主要工作和结论如下:一.新型苯乙烯-co-4-乙烯基吡啶共聚物/SiO<,2>壳核载体负载茂锆催化剂用于乙烯聚合.二.新型grape-type孔结构的聚(4-乙烯基吡啶)聚合物载体负载茂金属催化剂用于乙烯聚合.三.改性蒙脱土负载茂金属催化剂用于乙烯聚合.四.可控层间域结构的改性蒙脱土载体负载茂金属催化剂用于乙烯聚合.
Resumo:
A detailed petrologic and mineralogic study was carried out on serpentinized peridotites dredged from the southern landward slopes of the Mariana Trench, in order to reveal the serpentinization process of these unusual rocks and to identify the sole presence of the mineral lizardite. The constituent minerals of these southern Mariana forearc peridotites are olivine, amphibole and spinel, as well as serpentine, chlorite and talc. Compared with serpentinite seamounts, the serpentinized peridotites from the southern Mariana forearc are characterized by the absence of magnetite and brucite, and the common presence of talc; besides, the serpentine mineral variety is simplex, only lizardite. Combining mineral chemistry and mineral phase relationships, we conclude that (1) the absence of magnetite in the serpentinized peridotites is due to incomplete serpentinization, other than magnetite, the iron end-member in olivine forms Fe-rich brucite and Fe-rich serpentine; (2) brucite is not stable with high silica activity, reacting with later SiO2-rich fluid and then forming lizardite, leading to a lack of brucite in these serpentinized peridotites; (3) the occurrence of talc is the result of later SiO2-rich fluid reactions with lizardite; and (4) the reason for the sole occurrence of lizardite is that the temperature condition of our study area was not high enough for the formation of antigorite (which is stable at > 500 degrees C). Despite the broad overlap of lizardite and chrysotile in growth temperature, differences in the modes of occurrence of lizardite and chrysotile, such as the scarcity of H2O, low porosity and permeability, as well as the actual situation of initial serpentinization in the study area, result in the absolute prevalence of lizardite over chrysotile in the area. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
The adsorption of CO on Al(2)O(3), ZrO(2), ZrO(2)-SiO(2), and ZrO(2)-La(2)O(3) supported Pd catalysts was studied by adsorption microcalorimetry and infrared (TR) spectroscopy. Some interesting and new correlations between the results of microcalorimetry and IR spectroscopy have been found. The CO is adsorbed on palladium catalysts in three different modes: multibonded (3-fold), bridged (2-fold), both on Pd(lll) and (100) planes, and linear (1-fold) adsorbed species. The corresponding differential adsorption heats lie in the field of high (210-170 kJ/mol), medium (140-120 kJ/mol), and low (95-60 kJ/mol) values, respectively. The nature of the support, the reduction temperature, and the pretreatment conditions affect the surface structure of the Pd catalysts, resulting in variations in the site energy distribution, i.e., changes in the fraction of sites adsorbing CO with specific heats of adsorption. Moreover, the CeO(2); promoter addition weakens the adsorption strength of CO on palladium. Based on the exposed results, a correctness factor, which considers the percentages of various CO adsorption states, must be introduced when one calculates the Pd dispersion using CO adsorption data.
Resumo:
Total oxidation of chlorinated aromatics on supported manganese oxide catalysts was investigated. The catalysts have been prepared by wet impregnation method and characterized by XRD and TPR. Among the catalysts with the supports of TiO(2), Al(2)O(3) and SiO(2), titania supported catalyst (MnO(x)/TiO(2)) gives the highest catalytic activity. MnO(x)/TiO(2) (Mn loading, 1.9 wt.%) shows the total oxidation of chlorobenzene at about 400 degreesC. The activity can be stable for over 82 h except for the first few hours. At lower Mn loadings for MnO(x)/TiO(2), only one reduction peak appears at about 400 degreesC due to the highly dispersed manganese oxide. With the increase of Mn loading, another reduction peak emerges at about 500 degreesC, which is close to the reduction peak of bulk Mn(2)O(3) at 520 degreesC. TPR of the used catalyst is totally different from that of the fresh one indicating that the chemical state of the active species is changed during the chlorobenzene oxidation. The characterization studies of MnO(x)/TiO(2) showed that the highly dispersed MnO(x) is the precursor of the active phase, which can be converted into the active phase, mainly oxychlorinated manganese (MnO(y)Cl(z)), under working conditions of chlorobenzene oxidation. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Near-infrared to ultraviolet upconversion luminescence was observed in the Pr3+ :Y2SiO5 crystal with 120 fs, 800 mn infrared laser irradiation. The observed emissions at around 270 nm and 305 nm could be assigned to 5d -> 4f transitions of Pr3+ ions. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to simultaneous three-photon absorption induced upconversion luminescence. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive-index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio ( PER) of 61: 1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58: 1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity. (C) 2008 Optical Society of America.
Resumo:
Transparent Ni2+-doped MgO-Al2O3-SiO2 glass ceramics without and with Ga2O3 were synthetized. The precipitation of spinel nanocrystals, which was identified as solid solutions in the glass ceramics, could be favored by Ga2O3 addition and their sizes were about 7.6 nm in diameter. The luminescent intensity of the Ni2+-doped glass ceramics was largely enhanced by Ga2O3 addition which could mainly be caused by increasing of Ni2+ in the octahedral sites and the reduction of the mean frequency of phonon density of states in the spinel nanocrystals of solid solutions. The full width at half maximum (FWHM) of emissions for the glass ceramics with different Ga2O3 content was all more than 200 nm. The emission lifetime increased with the Ga2O3 content and the longest lifetime is about 250 mu s. The Ni2+-doped transparent glass ceramics with Ga2O3 addition have potential application as broadband optical amplifier and laser materials. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Er3+ -doped Gd2SiO5 (Er:GSO) single crystal with dimensions of circle divide 35 x 40 mm(3) has been grown by the Czochralski method. The absorption and fluorescence spectra of the Er:GSO crystal were measured at room temperature. The spectral parameters were calculated based on Judd-Ofelt theory, and the intensity parameters Omega(2), Omega(4) and Omega 6 are obtained to be 6.168 x 10(-20), 1.878 x 10(-20), and 1.255 x 10(-20) cm(2), respectively. The emission cross-section has been calculated by Fuechtbauer-Ladenbury formula. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
This paper reports that the TM3+:Lu2SiO5 (Tm:LSO) crystal is grown by Czochralski technique. The room-temperature absorption spectra of Tm:LSO crystal are measured on a b-cut sample with 4 at.% thulium. According to the obtained Judd-Ofelt intensity parameters Omega(2)=9.3155 x 10(-20) cm(2), Omega(4)=8.4103 x 10(-20) cm(2), Omega(6)=1.5908 x 10(-20) cm(2), the fluorescence lifetime is calculated to be 2.03 ms for F-3(4) -> H-3(6) transition, and the integrated emission cross section is 5.81 x 10(-18) cm(2). Room-temperature laser action near 2 mu m under diode pumping is experimentally evaluated in Tm:LSO. An optical-optical conversion efficiency of 9.1% and a slope efficiency of 16.2% are obtained with continuous-wave maximum output power of 0.67 W. The emission wavelengths of Tm:LSO laser are centred around 2.06 mu m with spectral bandwidth of similar to 13.6 nm.
Resumo:
A bulk crystal of Yb:Sc2SiO5 (Yb:SSO) with favorable thermal properties was successfully obtained by the Czochralski method. The energy level diagrams for Yb:SSO crystal were determined by optical spectroscopic analysis and semi-empirical crystal-field calculations using the simple overlap model. The full width at half maximum of the absorption band centering at 976 nm was calculated to be 24 nm with a peak absorption cross-section of 9.2x10(-21) cm(2). The largest ground-state splitting of Yb3+ ions is up to 1027 cm(-1) in a SSO crystal host. Efficient diode-pumped laser performance of Yb:SSO was primarily demonstrated with a slope efficiency of 45% and output power of 3.55 W.
Resumo:
4H-silicon carbide (SiC) metal-semiconductor-metal (MSM) ultraviolet (UV) photodetectors with Al2O3/SiO2 (A/S) films employed as antireflection/passivation layers have been demonstrated. The devices showed a peak responsivity of 0.12 A/W at 290 nm and maximum external quantum efficiency of 50% at 280 nm under 20 V electrical bias, which were much larger than conventional MSM detectors. The redshift of peak responsivity and response restriction effect were found and analyzed. The A/S/4H-SiC MSM photodetectors were also shown to possess outstanding features including high UV to visible rejection ratio, large photocurrent, etc. These results demonstrate A/S/4H-SiC photodetectors as a promising candidate for OEIC applications. (C) 2008 American Institute of Physics.
Resumo:
Al2O3/SiO2 films have been deposited as UV antireflection coatings on 4H-SiC by electron-beam evaporation and characterized by reflection spectrum, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The reflectance of the Al2O3/SiO2 films is 0.33% and 10 times lower than that of a thermally grown SiO2 single layer at 276 nm. The films are amorphous in microstructure and characterize good adhesion to 4H-SiC substrate. XPS results indicate an abrupt interface between evaporated SiO2 and 4H-SiC substrate free of Si-suboxides. These results make the possibility for 4H-SiC based high performance UV optoelectronic devices with Al2O3/SiO2 films as antireflection coatings. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Al2O3/SiO2 films have been prepared by electron-beam evaporation as ultraviolet (UV) antireflection coatings on 4H-SiC substrates and annealed at different temperatures. The films were characterized by reflection spectra, ellipsometer system, atomic force microscopy (AFM), X-ray diffraction (XRD) and Xray photoelectron spectroscopy (XPS), respectively. As the annealing temperature increased, the minimum reflectance of the films moved to the shorter wavelength for the variation of refractive indices and the reduction of film thicknesses. The surface grains appeared to get larger in size and the root mean square (RMS) roughness of the annealed films increased with the annealing temperature but was less than that of the as-deposited. The Al2O3/SiO2 films maintained amorphous in microstructure with the increase of the temperature. Meanwhile, the transition and diffusion in film component were found in XPS measurement. These results provided the important references for Al2O3/SiO2 films annealed at reasonable temperatures and prepared as fine anti-reflection coatings on 4H-SiC-based UV optoelectronic devices. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A series or Ta2O5 films with different SiO2 additional layers including overcoat, undercoat and interlayer was prepared by electron beam evaporation under the same deposition process. Absorption of samples was measured using the surface thermal lensing (STL) technique. The electric field distributions of the samples were theoretical predicted using thin film design software (TFCalc). The laser induced damage threshold (LIDT) was assessed using an Nd:YAG laser operating at 1064 nm with a pulse length of 12 ns. It was found that SiO2 additional layers resulted in a slight increase of the absorption, whereas they exerted little influence on the microdefects. The electric field distribution among the samples was unchanged by adding an SiO2 overcoat and undercoat, yet was changed by adding an interlayer. SiO2 undercoat. The interlayer improved the LIDT greatly, whereas the SiO2 overcoat had little effect on the LIDT. (C) 2007 Elsevier Ltd. All rights reserved.