120 resultados para Roma - Politica e governo - 30 A.C.-476

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

在理论分析的基础上 ,提出了一种利用兰州重离子加速器提供的高能 12 C离子模拟质子引起单粒子效应的途径 .在保证核反应机制是引起单粒子效应主要机制的前提下 ,用高能 12 C离子可以模拟质子在功率金属 -氧化物 -半导体场效应晶体管中引起的单粒子烧毁以及单粒子栅极击穿 ,获得质子单粒子效应的饱和截面 ,定性研究质子单粒子效应的角度效应 ,还可以作为高能质子单粒子效应实验前的预备实验 .该方法拓展了兰州重离子加速器加速的轻的重离子在单粒子效应实验研究方面的应用 ,对现阶段国内开展质子单粒子效应实验研究具有重要意义

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用离子注入和高温退火的方法在Si中生长了C含量为0.6%~1.0%的Si1?xCx合金, 研究了不同注入剂量下Si1?xCx合金的形成及其在退火过程中的稳定性. 如果注入剂量小于引起Si非晶化的剂量, 850℃退火后, 注入产生的损伤缺陷容易与C原子结合形成缺陷团簇, 难于形成Si1?xCx合金. 随着注入C离子剂量的增大, 注入产生的损伤增强, 容易形成Si1?xCx合金, 但注入的剂量增大到一定程度, Si1?xCx合金的应变将趋于饱和, 即只有部分C原子进入晶格位置形成合金相. Si1?xCx合金一旦形成, 在950℃仍比较稳定, 而温度高于1 000℃, 合金的应力将部分释放. 随着合金中C原子浓度的升高, 合金的稳定性变差.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

研究了UV-C辐射下短期和长期脱落酸(ABA)处理对小麦幼苗CO2同化作用、羧化效率、光合CO2响应以及抗氧化酶活性等的影响.结果表明,在无UV-C辐射情况下,短期和长期ABA处理能提高光合速率,比对照增加14·69%和20·46%,降低气孔导度,比对照降低14·74%和17·31%,但对胞间CO2浓度和羧化效率影响不大.当受到UV-C辐射时,光合速率、羧化效率、气孔导度和胞间CO2浓度逐渐降低.长期ABA处理变化最小,其次为ABA短期处理,对照降低最大.ABA处理能够提高小麦光合对CO2的响应,UV-C辐射抑制光合对CO2的响应.ABA处理能够提高小麦抗氧化酶(CAT、SOD、POD)活性而降低MDA含量.在UV-C辐射下,CAT活性先升高随后降低,在辐射处理1h时活性达最大值,ABA处理的SOD和POD活性先升高后降低,且ABA长期处理比短期处理增加明显,对照则逐渐降低.ABA处理可能通过提高小麦CO2同化作用和抗氧化酶活性增强对UV-C胁迫的抗性,且ABA长期处理比短期处理效果更明显.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

以小麦和豌豆为材料,研究了UV-C辐射(波长<280nm)对叶片光合特性及抗氧化酶活性的影响.结果表明:UV-C辐射增强,可使豌豆叶片光合速率减弱,气孔导度、胞间CO2浓度、蒸腾速率和羧化效率明显降低,而对小麦叶片上述各项指标的影响则是先增加、后降低;在UV-C辐射下,豌豆的CO2补偿点逐渐升高,而小麦的CO2补偿点先降低、后升高.UV-C辐射除了使豌豆的POD活性和小麦的SOD活性逐渐降低外,其他抗氧化酶活性则呈先升高、后降低的变化趋势.小麦对短时间UV-C辐射的抗性比豌豆强,但随着UV-C辐射时间的延长,小麦和豌豆的抗氧化酶活性均降低,光合作用减弱.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用有机溶剂沉淀方法去除J26发酵液中杂蛋白,通过离子交换、活性炭吸附去除发酵液中杂质,最后蒸发浓缩获得无色透明结晶。通过对所获晶体的红外光谱分析、熔点测定、纸层析鉴定,证明所获晶体确为维生素C前体2-酮基-L-古龙酸(2-KGA)。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

陆地生态系统与大气之间的水热碳交换是物质、能量循环的关键过程,一直以来都为研究者们所关注。进入20 世纪以来,特别是随着人们对全球气候变暖的逐步认识,气候变化对水热碳交换过程的影响及其对气候变化的响应研究更加备受关注。本研究以2004~2006 年近三年的涡度相关系统连续观测数据为依托,分析了雨养玉米农田水热碳通量的动态及其影响因子。研究表明,玉米农田水热通量(WHF) 呈显著的单峰型日变化, 日最大值出现在正午12:00~13:00,WHF 变化同步。潜热通量(LE)的季节变化规律与日变化相似,冬季小夏季大,年最大值与最小值分别出现在7 月和1 月。显热通量(Hs) 季节变化也呈单峰型,但年最大值出现在5 月,这主要与降水以及作物生长有关。半小时尺度上,WHF 主要受辐射控制,而日峰值受辐射峰值以及植被生长的双重影响;日尺度上,只要有降水过程,Hs 就会随土壤水分的增大而减小,降水停止后逐渐恢复。而降水对LE 的影响受到可用能量(AE)的干扰,表现出复杂的变化趋势。总的来说,降水持续时间越长AE 越少,对LE 的抑制越大;季节尺度上,WHF 受热量与水分的双重制约。Hs 随着天气回暖后第一次较大降水过程的出现呈现明显下降,而LE 则呈现相反的变化趋势。随着雨季到来和作物的生长,Hs 在7 月出现低谷,而LE 呈现相反的趋势随着降水量的增加而增大;年际间WHF 的分布规律大体一致,但因气象条件等的差异,特别是降水的差异造成年际间WHF 略有不同。在不同水文年型下,水分因子的影响作用有显著差异,且WHF 对热量与水分条件变化的敏感程度也不相同。欠水年,水分因子的作用更显著,是制约WHF 变化的主要控制因子,WHF 对水分的变化更敏感;而丰水年,水分因子的影响减弱,热量的盈亏决定着WHF 变化的主要方向。在不同水文年型下,水热碳通量对水热条件的变化表现出不同的响应方式,为研究生态系统对气候变化的响应提供了参考。 净碳(C)吸收期,玉米农田净碳交换(NEE)呈显著的日变化,在日出以后由CO2 释放转变为CO2 吸收,12:30 左右达到一天中的吸收峰值,日落前出现相反的转换。而净C 释放期内,NEE 均为正值且无明显日变化。NEE 季节变化也呈单峰型二次曲线,在7 月下旬或8 月上旬达到年最大吸收率。根据NEE 的正负,一年分为三个阶段:两个C 排放期与一个C 吸收期。一般C 吸收期从6月开始到9 月结束,此前此后均为C 排放期。在半小时、日时间尺度上,光通量密度(PPFD)与NEE 有着相似的变化规律,是控制NEE 的主要因子;在日、季节尺度上,叶面积指数(LAI)和气孔导度(gs)是影响NEE 的主要生物因子,且gs 的影响程度随着发育期的变化而变化,而不同年份间LAI 对NEE 的影响没有显著的差异。几乎在所有时间步长上,土壤温度(Ts)均为生态系统呼吸(Re)的主要控制因子,时间尺度愈短,二者的相关性愈好。总的来说,在较短时间尺度上,高PPFD 与夏季低温将会促进C 的吸收,有利于C 累积。 玉米农田日最大净C 吸收速率(NEEmax, daily)以及吸收释放转换点(NEE=0)均受PPFD 控制。NEEmax, daily 出现时间与PPFDmax, daily 出现时间几乎完全一致,当PPFD 达到1 日内极大值时,净C 吸收也相应达到了日最大值。但NEEmax, daily的量值还受到其它因子的影响。当水分条件充足时,还将受到LAI、gs 等生物因子的控制。NEE 由正转为负的转换点也是由PPFD 决定。当PPFD 稳定大于PPFD*( PPFD*=100 μmol•m-2s -1)时,净C 吸收开始;当PPFD 稳定小于PPFD*时,净C 吸收由此结束。1 日内,PPFD 稳定通过PPFD*之间的时间间隔决定了日净C 吸收的时间长度。日净C 吸收的时间越长,吸收量也越大,且有明显的季节变化,7 月最长9 月最短。 按照热量水分状况将三年分组,分为I 组(水分状况相似,热量条件不同)与II 组(热量条件相似,水分状况不同)。 I 组年际间PPFD 波动是造成C 交换格局变化的关键原因。而II 组年际间C 交换格局不同是由降水量及其不同分布引起的土壤含水量(SWC)变化是造成。SWC 可以解释年际间NEE 变异的97%,而大气水汽压亏缺(VPD)可以解释30.7%;温度因子通过影响C 收支中的呼吸项,间接影响着生态系统的NEE,它可以解释年际间NEE 变异的73.9%,也是造成年际间C 交换格局不同的原因之一;另外,PPFD 和发育期早晚以及净C吸收期长度等也同样影响着C 交换格局的变化。综合两组情况来看,由水分条件年际变化引起的NEE 的波动大于能量年际变化引起的波动。总之,在较长时间尺度上,NEE 对SWC 变化比其对PPFD 变化更敏感,说明在半干旱地区土壤水分条件仍然是决定C 交换格局的主导因子。 NEE 与LE 呈线性相关,它们之间的相关性主要受温度和NEE 的控制,温度越高,二者的相关性越弱,而NEE 越大二者相关性越好。同时,作物蒸腾与土壤蒸发的比例也是影响NEE 与LE 之间关系的主要因素。蒸腾作用所占的比例越大,二者的线性关系越显著,而土壤蒸发比例越大,二者的相关性越弱。总的来说,NEE 与LE 之间的线性关系有明显的季节变化,生长季好于非生长季,夏天好于冬天。 总之,雨养玉米农田水热碳通量既具有其它农田生态系统共有的动态特征,也具有其特有特征。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microcystins (MCs) are a family of related cyclic hepatotoxic heptapeptides, of which more than 70 types have been identified. The chemically unique nature of the C20 beta-amino acid, (2S, 3S, 8S, 9S)-3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca4,6-dienoic acid (Adda), portion of the MCs has been exploited to develop a strategy to analyze the entirety. Oxidation of MCs causes the cleavage of MC Adda to form 2-methyl-3-methoxy-4-phenylbutanoic acid (MMPB). In the present study, we investigated the kinetics of MMPB produced by oxidation of the most-often-studied MC variant, MC-LR (L = leucine, R = arginine), with permanganate-periodate. This investigation allowed insight regarding the influence of the reaction conditions (concentration of the reactants, temperature, and pH) on the conversion rate. The results indicated that the reaction was second order overall and first order with respect to both permanganate and MC-LR. The second-order rate constant ranged from 0.66 to 1.35 M/s at temperatures from 10 to 30 degrees C, and the activation energy was 24.44 kJ/mol. The rates of MMPB production can be accelerated through increasing reaction temperature and oxidant concentration, and sufficient periodate is necessary for the formation of MMPB. The initial reaction rate under alkaline and neutral conditions is higher than that under acidic conditions, but the former decreases faster than the latter except under weakly acidic conditions. These results provided new insight concerning selection of the permanganate-periodate concentration, pH, and temperature needed for the oxidation of MCs with a high and stable yield of MMPB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biosynthesis and metabolism of astaxanthin in coenobium alga Scenedesmus obliquus were investigated using a two-stage culture. The first stage was for the analysis of biosynthesis and accumulation of astaxanthin in alga cells which were cultured under induction conditions (incubation at 30 degrees C and illumination of 180 mu mol m(-2) s(-1)) for 48 h. The composition of the secondary carotenoids in algal cells was analyzed and seven ketocarotenoids were identified. The results implied that S. obliquus synthesized astaxanthin from beta-carotene through three possible pathways. In the second stage, the cultures were transferred to normal conditions (incubation at 25 C and illumination of 80 mu mol m(-2) s(-1)) for 72 h. Algal cells accumulated more chlorophyll and biosynthesis of secondary carotenoids terminated, the content of secondary carotenoids decreased from 59.48 to 6.57%. The results inferred that accumulation and metabolism of astaxanthin could be controlled by cultivated conditions which also could lead the mobilization of secondary carotenoids to support the algal cell growth. The results also implied that presumed conversions from astaxanthin to lutein or antheraxanthin could be modulated by culturing conditions. (C) 2008 Published by Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of similar to 30 degrees C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280-400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400-700 nm] and PAB [PAR + UV-A + UV-B: 280-700]), three temperatures (15, 22, and 30 degrees C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] . L-1). UVR caused a breakage of the spiral structure at 15 degrees C and 22 degrees C, but not at 30 degrees C. High PAR levels also induced a significant breakage at 15 degrees C and 22 degrees C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15 degrees C but was relatively high at 30 degrees C even under the treatment with UVR in 8 h. At 30 degrees C, UVR led to 93%-97% less DNA damage when compared with 15 degrees C after 8 h of exposure. UV-absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature-dependent effects of UVR on this organism are discussed in this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maturation pattern of sexual reproduction in Hizikia fusiformis (Harvey) Okamura (Sargassaceae, Phaeaophyta) was examined in 2003 at Yunao Bay, Nanao Island, Shantou, China. Maturation began in mid-April (seawater temperature 19-21 degrees C), reached the peak in mid-May (maturation rate ca. 70%, and seawater temperature 23.5-25 degrees C) and finished in late-June (seawater temperature 27.5-30 degrees C). The Hizikia plants continued to gain the length from the beginning of maturation season to reach a maximum mean length of 34.8 cm in mid-May, after which the mean length was reduced drastically due to the senescence and rupture of the larger plants in size. The major portion of the mature plants belonged to the larger plants between April and May, but to the smaller ones in June. It is suggested that the plant must achieve a critical size before reproductive maturation occurred. There was a positive relationship between the number of receptacles (NR), as well as the reproductive allocation (RA), and the plant size of Hizikia population, with the recorded maximum values of NR and RA being 1220 and 64.3% respectively, for a single plant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dibenzofuran (DF)-degrading bacterium, Janibacter terrae strain XJ-1, was isolated from sediment from East Lake in Wuhan, China. This strain grows aerobically on DF as the sole source of carbon and energy; it has a doubling time of 12 hours at 30 degrees C; and it almost completely degraded 100 mg/L-1 DF in 5 days, producing 2,2',3-trihydroxybiphenyl, salicylic acid, gentisic acid, and other metabolites. The dbdA (DF dioxygenase) gene cluster in the strain is almost identical to that on a large plasmid in Terrabacter sp. YK3. Unlike Janibacter sp. strain YY-1, XJ-1 accumulates gentisic acid rather than catechol as a final product of DF degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photosynthetic responses to irradiance and temperature of "leaves" and receptacles were compared in February ( vegetative stage) and May ( reproductive stage) in the seaweed, Hizikia fusiforme ( Harvey) Okamura (Sargassaceae, Phaeophyta) from Nanao Island, Shantou, China. Irradiance-saturated photosynthesis (P-max) was significantly higher in receptacles than in "leaves" on a fresh weight basis, and that of "leaves" was greater in May than in February at ambient seawater temperatures. The optimum temperature for P-max was 30 degrees C for both "leaves" and receptacles, being 5 - 10 degrees C higher than the ambient seawater temperature. The apparent photosynthetic efficiencies were greater in receptacles than in "leaves" within the tested temperature range of 10 - 40 degrees C. The irradiance for saturating photosynthesis for both "leaves" and receptacles was temperature-dependent, with the highest values ( about 200 mu mol photons m(-2) s(-1)) at 30 degrees C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The occurrence of the microcystins in the water bodies, especially in drinking water resources, has received considerable attentions. In situ chemical oxidation is a promising cost-effective treatment method to remove MC from water body. This research investigated the reaction kinetics of the oxidation of MCRR by permanganate. Experimental results indicate that the reaction is second order overall and first order with respect to both permanganate and MCRR, and has an activation energy of 18.9 kJ/mol. The second-order rate constant ranges from 0.154 to 0.225 l/mg/min at temperature from 15 to 30 degrees C. The MCRR degradation rates can be accelerated through increasing reaction temperature and oxidant concentration. The reaction under acid conditions was slightly faster than under alkaline conditions. The half-life of the reaction was less than 1 min, and more than 99.5% of MCRR was degraded within 10 min. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Population parameters of Daphnia rosea were studied at various concentrations of Chlorella sp. (0.25, 0.75 and 3.0 mg C l(-1)) at several temperatures (20, 25, 28, and 30 degrees C) in the laboratory. Although there were some differences in the degrees of the effects of the various temperature-food combinations, both food and temperature exerted influences on almost all of the main population parameters of D. rosea. At a water temperature of 28 degrees C, growth and reproduction were reduced, and at the lowest food level (0.25 mgC l(-1)), reproduction failed. D, rosea did not survive at 30 degrees C in spite of abundant food supply, indicating that 30 degrees C is a physiological limit. A positive relationship between body length and brood size was recognized at high and medium food levels. The slope of the regression was the highest at the highest food level and at the lowest temperature (20 degrees C). The low food level exerted a negative influence on the net reproductive rate by lowering the size of egg-bearing females, by decreasing the brood size of each size class, by decreasing the brood number per female, and by increasing the period of empty brood chamber. High water temperature (28 degrees C) also exerted a negative influence on the net reproductive rate in a similar way. For the better understanding of the key factors driving the midsummer dynamics of daphnids in the field, it may be of crucial importance to compare the population parameters of the field populations with experimentally derived values under controlled conditions of food concentration and temperature.