19 resultados para Ribosome profiling

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To determine whether trichobitacin, a novel ribosome-inactivating protein purified from the root tubers of Trichosanthes kirilowii, possesses the anti-HIV activity. METHODS: The inhibition of syncytial cell formation induced by human immunodeficiency virus type 1 (HIV-1),was determined under microscope, reduction of HIV-1 p24 antigen expression level was measured by ELISA, and decrease in numbers of HIV-1 antigen positive cells in acutely and-chronically infected cultures were detected by indirect immunofluorescence assay. RESULTS: Trichobitacin Was-found to greatly suppress syncytial cell formation induced by HIV-1 and to markedly reduce both expression of HIV-1 p24 antigen and the number of HIV antigen positive cells in acutely but not chronically HIV-1 infected culture. The median inhibitory concentration (IC50) in inhibition of syncytial cell formation and HIV antigen positive cells were 5 mu g.L-1 (95 % confidence limits: 1.3 - 20 mu g.L-1) and 0.09 mg.L-1 (95 % confidence limits: 0.011 - 0.755 mg.L-1), respectively. CONCLUSION: Trichobitacin is a novel ribosome-inactivating protein with anti-HIV-l activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichosanthin (TCS) is a type I ribosome inactivating (RI) protein possessing anti-tumor and antiviral activity, including human immunodeficiency virus (HIV). The mechanism of these actions is not entirely clear, but is generally attributed to its RI property. In order to study the relationship between the anti-HIV-1 activity of TCS and its RI activity, three TCS mutants with different RI activities were constructed by using site-directed mutagenesis. The anti-HIV-1 activities of the three mutants were tested in vitro. Results showed that two TCS mutants, namely TCSM((120-123)), TCSE160A/E189A, with the greatest decrease in RI activity, lost almost all of the anti-HIV activity and cytopathic effect. Another mutant TCSR122G, which exhibited a 160-fold decrease in RI activity, retained some anti-HIV activity. The results from this study suggested that RI activity of TCS may have significant contribution to its anti-HIV-1 property. (C) 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichosanthin (TCS) is a type I ribosome-inactivating (RI) protein possessing multiple biological and pharmacological activities. Its major action is inhibition of human immunodeficiency virus (HIV) replication but the mechanism is still elusive. All evidences showed that this action is related to its RI activity. Previous studies found that TCS mutants with reduced RI activity simultaneously lost some anti-HIV activity. In this study, an exception was demonstrated by two TCS mutants retaining almost all RI activity but were devoid of anti-HIV-1 activity. Five mutants were constructed by using site-directed mutagenesis with either deletion or addition of amino acids to the C-terminal sequence. Results showed that the RI activity of mutants with C-terminal deletion mutants (TCSC2, TCSC4, and TCSC14) decreased by 1.2-3.3-fold with parallel downshifting of its anti-HIV-1 activity (1.4-4.8-fold). Another two mutants, TCSC19aa and TCSKDEL having 19 amino acid extension and a KDEL signal sequence added to the C-terminal sequence, retained all RI activity but subsequently lost most of the anti-HIV-1 activity. These findings suggested that ribosome inactivation alone might not be adequate to explain the anti-HIV action of TCS. (C) 2003 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed X-ray photoelectron spectroscopy (XPS) depth profiling measurements were performed across the back n-layer/transparent conducting oxide (n/TCO) inter-faces for superstrate p-i-n solar cells to examine differences between amorphous silicon (a-Si:H) and microcrystalline silicon (mu c-Si:H) n-layer materials as well as TCO materials ZnO and ITO in the chemical, microstructural and diffusion properties of the back interfaces. No chemical reduction of TCO was found for all variations of n-layer/TCO interfaces. We found that n-a-Si:H interfaces better with ITO, while n-mu c-Si:H, with ZnO. A cross-comparison shows that the n-a-Si:H/ITO interface is superior to the n-mu c-Si:H/ZnO interface, as evidenced by the absence of oxygen segregation and less oxidized Si atoms observed near the interface together with much less diffusion of TCO into the n-layer. The results suggest that the n/TCO interface properties are correlated with the characteristics of both the n-layer and the TCO layer. Combined with the results reported on the device performance using similar back n/TCO contacts, we found the overall device performance may depend on both interface and bulk effects related to the back n/TCO contacts. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the a-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metabolic profiling of serum from gadolinium chloride (GdCl3, 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168 h postdose (p.d.) after exposure to GdCl3. H-1 NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl3 treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl3 was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl3 in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging.