130 resultados para Quadratic error gradient
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An improved BP algorithm for pattern recognition is proposed in this paper. By a function substitution for error measure, it resolves the inconsistency of BP algorithm for pattern recognition problems, i.e. the quadratic error is not sensitive to whether the training pattern is recognized correctly or not. Trained by this new method, the computer simulation result shows that the convergence speed is increased to treble and performance of the network is better than conventional BP algorithm with momentum and adaptive step size.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
New uniform algorithm to predict reversed phase retention values under different gradient conditions
Resumo:
A new numerical emulation algorithm was established to calculate retention parameters in RP-HPLC with several retention times under different linear or nonlinear binary gradient elution conditions and further predict the retention time under any other binary gradient conditions. A program was written according to this algorithm and nine solutes were used to test the program. The prediction results were excellent. The maximum relative error of predicted retention time was less than 0.45%. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A theoretical study on the velocity of electroosmotic flow (EOF) and the retention times of neutral solutes under multiple-step gradient of capillary electrochromatography (CEC) was carried out, focusing on that with three kinds of mobile phases. Through the model computations, the detaining time of the second kind of mobile phase in the column was proved to play an important role in affecting EOF. The variation speed of EOF was shown to be determined by the differences among dead times in different steps. In addition, the prediction of the retention times of 13 aromatic compounds under gradient mode was performed with the deduced equations. A relative error below 3.3% between the calculated and experimental values was obtained, which demonstrated the rationality of the theoretical deduction. Our study could not only improve the comprehension of stepwise gradient elution, but also be of significance for the further optimization of separation conditions in the analysis of complex samples.
Resumo:
The conditional nonlinear optimal perturbation (CNOP), which is a nonlinear generalization of the linear singular vector (LSV), is applied in important problems of atmospheric and oceanic sciences, including ENSO predictability, targeted observations, and ensemble forecast. In this study, we investigate the computational cost of obtaining the CNOP by several methods. Differences and similarities, in terms of the computational error and cost in obtaining the CNOP, are compared among the sequential quadratic programming (SQP) algorithm, the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm, and the spectral projected gradients (SPG2) algorithm. A theoretical grassland ecosystem model and the classical Lorenz model are used as examples. Numerical results demonstrate that the computational error is acceptable with all three algorithms. The computational cost to obtain the CNOP is reduced by using the SQP algorithm. The experimental results also reveal that the L-BFGS algorithm is the most effective algorithm among the three optimization algorithms for obtaining the CNOP. The numerical results suggest a new approach and algorithm for obtaining the CNOP for a large-scale optimization problem.
Resumo:
在应用激光技术加工复杂曲面时,通常以采样点集为插值点来建立曲面函数,然后实现曲面上任意坐标点的精确定位。人工神经网络的BP算法能实现函数插值,但计算精度偏低,往往达不到插值精确要求,造成较大的加工误差。提出人工神经网络的共轭梯度最优化插值新算法,并通过实例仿真,证明了这种曲面精确定位方法的可行性,从而为激光加工的三维精确定位提供了一种良好解决方案。这种方法已经应用在实际中。
Resumo:
A new phenomenological strain gradient theory for crystalline solid is proposed. It fits within the framework of general couple stress theory and involves a single material length scale Ics. In the present theory three rotational degrees of freedom omega (i) are introduced, which denote part of the material angular displacement theta (i) and are induced accompanying the plastic deformation. omega (i) has no direct dependence upon u(i) while theta = (1 /2) curl u. The strain energy density omega is assumed to consist of two parts: one is a function of the strain tensor epsilon (ij) and the curvature tensor chi (ij), where chi (ij) = omega (i,j); the other is a function of the relative rotation tensor alpha (ij). alpha (ij) = e(ijk) (omega (k) - theta (k)) plays the role of elastic rotation reason The anti-symmetric part of Cauchy stress tau (ij) is only the function of alpha (ij) and alpha (ij) has no effect on the symmetric part of Cauchy stress sigma (ij) and the couple stress m(ij). A minimum potential principle is developed for the strain gradient deformation theory. In the limit of vanishing l(cs), it reduces to the conventional counterparts: J(2) deformation theory. Equilibrium equations, constitutive relations and boundary conditions are given in detail. For simplicity, the elastic relation between the anti-symmetric part of Cauchy stress tau (ij), and alpha (ij) is established and only one elastic constant exists between the two tensors. Combining the same hardening law as that used in previously by other groups, the present theory is used to investigate two typical examples, i.e., thin metallic wire torsion and ultra-thin metallic beam bend, the analytical results agree well with the experiment results. While considering the, stretching gradient, a new hardening law is presented and used to analyze the two typical problems. The flow theory version of the present theory is also given.
Resumo:
Overland flow on a hillslope is significantly influenced by its microtopography, slope length and gradient, and vegetative cover. A 1D kinematic wave model in conjunction with a revised form of the Green-Ampt infiltration equation was employed to evaluate the effect of these surface conditions. The effect of these conditions was treated through the resistance parameter in the kinematic wave model. The resistance in this paper was considered to be made up of grain resistance, form resistance, and wave resistance. It was found that irregular slopes with microtopography eroded more easily than did regular slopes. The effect of the slope gradient on flow velocity and flow shear stress could be negative or positive. With increasing slope gradient, the flow velocity and shear stress first increased to a peak value, then decreased again, suggesting that there exists a critical slope gradient for flow velocity and shear stress. The vegetative cover was found to protect soil from erosion primarily by enhancing erosion-resisting capacity rather than by decreasing the eroding capability of overland flow.
Resumo:
The flow theory of mechanism-based strain gradient (MSG) plasticity is established in this paper following the same multiscale, hierarchical framework for the deformation theory of MSG plasticity in order to connect with the Taylor model in dislocation mechanics. We have used the flow theory of MSG plasticity to study micro-indentation hardness experiments. The difference between deformation and flow theories is vanishingly small, and both agree well with experimental hardness data. We have also used the flow theory of MSG plasticity to investigate stress fields around a stationary mode-I crack tip as well as around a steady state, quasi-statically growing crack tip. At a distance to crack tip much larger than dislocation spacings such that continuum plasticity still applies, the stress level around a stationary crack tip in MSG plasticity is significantly higher than that in classical plasticity. The same conclusion is also established for a steady state, quasi-statically growing crack tip, though only the flow theory can be used because of unloading during crack propagation. This significant stress increase due to strain gradient effect provides a means to explain the experimentally observed cleavage fracture in ductile materials [J. Mater. Res. 9 (1994) 1734, Scripta Metall. Mater. 31 (1994) 1037; Interface Sci. 3(1996) 169].
Resumo:
The gradient elastic constitutive equation incorporating the second gradient of the strains is used to determine the monochromatic elastic plane wave propagation in a gradient infinite medium and thin rod. The equation of motion, together with the internal material length, has been derived. Various dispersion relations have been determined. We present explicit expressions for the relationship between various wave speeds, wavenumber and internal material length.
Resumo:
A new hardening law of the strain gradient theory is proposed in this paper, which retains the essential structure of the incremental version of conventional J(2) deformation theory and obeys thermodynamic restrictions. The key feature of the new proposal is that the term of strain gradient plasticity is represented as an internal variable to increase the tangent modulus. This feature which is in contrast to several proposed theories, allows the problem of incremental equilibrium equations to be stated without higher-order stress, higher-order strain rates or extra boundary conditions. The general idea is presented and compared with the theory given by Fleck and Hutchinson (Adv. in Appl. Mech. (1997) 295). The new hardening law is demonstrated by two experimental tests i.e. thin wire torsion and ultra-thin beam bending tests. The present theoretical results agree well with the experiment results.
Resumo:
The close form solutions of deflections and curvatures for a film–substrate composite structure with the presence of gradient stress are derived. With the definition of more precise kinematic assumption, the effect of axial loading due to residual gradient stress is incorporated in the governing equation. The curvature of film–substrate with the presence of gradient stress is shown to be nonuniform when the axial loading is nonzero. When the axial loading is zero, the curvature expressions of some structures derived in this paper recover the previous ones which assume the uniform curvature. Because residual gradient stress results in both moment and axial loading inside the film–substrate composite structure, measuring both the deflection and curvature is proposed as a safe way to uniquely determine the residual stress state inside a film–substrate composite structure with the presence of gradient stress.
Resumo:
Residual stress and its gradient through the thickness are among the most important properties of as-deposited films. Recently, a new mechanism based on a revised Thomas-Fermi-Dirac (TFD) model was proposed for the origin of intrinsic stress in solid film