115 resultados para Piezoelectric Actuators
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Piezoelectric actuators are mounted on both sides of a rectangular wing model. Possibility of the improvement of aircraft rolling power is investigated. All experiment projects, including designing the wind tunnel model, checking the material constants, measuring the natural frequencies and checking the effects of actuators, guarantee the correctness and precision of the finite element model. The wind tunnel experiment results show that the calculations coincide with the experiments. The feasibility of fictitious control surface is validated.
Resumo:
Piezoelectric actuators are distributed on both side of a rectangular wing model,and the possibility of improvement of aircraft rolling power is investigated. The difference between the model with aileron deflection and the model without aileron (fictitious control surface, FCS) is studied. The analytical results show that these two cases are substantial different. In aileron deflection case, the aeroelastic effect is disadvantageous, so the structural stiffness should be high until the electrical voltage is not necessary. But in the case of FCS,the aeroelastic effect is advantageous and it means that lower structural stiffness can lead to lower voltage. Compared with aileron project, the FCS project can save structure weight.
Resumo:
In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.
Resumo:
We study the effect of an external biaxial stress on the light emission of single InGaAs/GaAs(001) quantum dots placed onto piezoelectric actuators. With increasing compression, the emission blueshifts and the binding energies of the positive trion (X+) and biexciton (XX) relative to the neutral exciton (X) show a monotonic increase. This phenomenon is mainly ascribed to changes in electron and hole localization and it provides a robust method to achieve color coincidence in the emission of X and XX, which is a prerequisite for the possible generation of entangled photon pairs via the recently proposed "time reordering'' scheme.
Resumo:
对采用分布式压电驱动器升力面的颤振主动抑制进行了理论与试验研究。应用LQG最优控制法设计了主动控制律,在控制律降阶时提出了平衡实现与LK法结合使用的新途径,在对不定常气动力进行有理函数拟合时对LS法进行了改进。试验中利用激光测速仪非接触测量模型的速度响应并在地面共振试验中用压电驱动器激振模型。颤振风洞试验结果表明,理论计算合理并与试验结果吻合良好。
Resumo:
随着压电智能材料与结构的发展,压电驱动器在气动弹性控制领域占据重要地位.使用压电驱动器控制翼面变形,利用而不是抵抗气动弹性效应可以控制升力、力矩以及它们的分布.采用基本相同的智能结构翼面控制系统,根据不同的控制目标需求,使用压电智能材料驱动器可以达到多种目的,包括静态的形状控制与动态的颤振抑制、抖振控制与阵风响应控制.静态控制方面例如改变翼面形状获得附加空气动力以增加升力、提供横滚力矩、改变升力分布以减小诱导阻力或减小翼根弯矩等;动态控制例如利用改变翼面形状产生的附加空气动力作为控制载荷,改变气动弹性系统的耦合程度,根据控制效果要求可作为气动阻尼、气动刚度或气动质量.这种控制方法可以减轻结构重量,提高操纵效率,扩大飞行包线,提高材料利用率,已成为可变形飞行器的重要研究内容.本文主要阐述压电驱动器气动弹性应用的动机与机理、发展与成就以及问题与展望.
Resumo:
提出一种新型的五自由度精密定位平台的工作原理及其设计方法。工作台采用压电陶瓷作为驱动元件,柔性导向机构实现平移及转动功能。整个工作台可由整块金属材料通过线切割加工制成,实现一体化加工,而且结构紧凑。并给出导向机构刚度计算公式及设计实例。
Resumo:
提出一种新型的五自由度精密定位平台的工作原理及其设计方法。工作台采用柔性导向机构实现平移及转动功能,采用压电陶瓷作为驱动元件,外置纳米级电容传感器作为位移量测量反馈元件,采用数字PID控制方法,可以实现纳米级精度的定位。给出了多种形式柔性导向机构刚度计算公式及设计实例。
Resumo:
In petawatt laser system, the gratings used to compose pulse compressor are very large in size which can be only acquired currently by arraying small aperture gratings to form a large one instead, an approach referred to as grating tiling. Theory and experiments have demonstrated that the coherent addition of multiple small gratings to form a larger grating is viable, the key technology of which is to control the relative position and orientation of each grating with high precision. According to the main factors that affect the performance of the grating tiling, a 5-DOF ultraprecision stage is developed for the grating tiling experiment. The mechanism is formed by serial structures. The motion of the mechanism is guided by flexure hinges and driven by piezoelectric actuators and the movement resolution of which can achieve nanometer level. To keep the stability of the mechanism, capacitive position sensors with nanometer accuracy are fixed on it to provide feedback signals with which to realize closed-loop control, thus the positioning precision of the mechanism is within several nanometers range through voltage control and digital PID algorithm. Results of experiments indicate that the performance of the mechanism can meet the requirement of precision for grating tiling.}
Resumo:
Tunable biaxial stresses, both tensile and compressive, are applied to a single layer graphene by utilizing piezoelectric actuators. The Gruneisen parameters for the phonons responsible for the D, G, 2D and 2D' peaks are studied. The results show that the D peak is composed of two peaks, unambiguously revealing that the 2D peak frequency (omega(2D)) is not exactly twice that of the D peak (omega(D)). This finding is confirmed by varying the biaxial strain of the graphene, from which we observe that the shift of omega(2D)/2 and omega(D) are different. The employed technique allows a detailed study of the interplay between the graphene geometrical structures and its electronic properties.
Resumo:
随着压电材料结构在航空航天结构控制领域的广泛应用, 压电驱动器与主体结构间的应变传递问题的研究日益重要. 该文首先对压电驱动器应用中的应变传递模型----均匀应变模型与Bernoulli-Euler模型进行了优缺点的分析对比; 其次将Bernoulli-Euler模型用于考虑胶层影响情况, 考虑到压电驱动器在航空航天领域的应用, 着重类似于翼面结构的模型分析, 得到了实际应用中压电驱动器沿结构厚度方向的应变传递表达式; 最后通过数值计算的方法确定了所得应变表达式适用的胶粘剂弹性模量及厚度的范围. 结果表明此表达式的有效性, 使 Bernoulli-Euler模型的应用更接近于实际情况, 同时为智能结构实际应变分布的分析提供了一定的依据与基础
Resumo:
空间机器人和大型柔性空间结构在航天器调姿、变轨、外部扰动的情况下将引起振动问题,其低频大幅值振动将持续很长时间,这将影响航天器系统的稳定性和控制精度。为了快速抑制低频大幅值振动及残余振动,提出采用复合可控反作用力幅值的喷气式驱动和压电陶瓷驱动方案进行振动控制。进行基于复合控制的柔性臂系统动力学建模并给出控制算法。设计并建立柔性机械臂试验平台,构建气动驱动控制回路及压电驱动控制回路。进行基于压电陶瓷驱动器、喷气式驱动器及复合喷气和压电驱动器的柔性臂大幅值低频模态振动控制的几种方法试验比较研究。试验结果表明,采用的控制方案和方法既可以快速地抑制柔性机械臂统的低频大幅值振动,又明显地同时抑制高频和低频小幅值残余振动。
Resumo:
0-3 connectivity piezoelectric composites lead zirconate titanate(PZT)/polyvinylidene fluoride(PVDF) were prepared. Crystallininity and microstructure of the samples were characterized by SEM, FTIR and WAXD. The results indicated that the PZT powder was blended with non-crystalline phase of PVDF. The composites presented different net-morphology. PVDF existed as g crystalline phase in the composites. The composites presented island type structure with low content of PZT and hard sphere stack in irregular type with high content of PZT.
Resumo:
This paper presents an analysis of crack problems in homogeneous piezoelectrics or on the interfaces between two dissimilar piezoelectric materials based on the continuity of normal electric displacement and electric potential across the crack faces. The explicit analytic solutions are obtained for a single crack in an infinite piezoelectric or on the interface of piezoelectric bimaterials. For homogeneous materials it is found that the normal electric displacement D-2, induced by the crack, is constant along the crack faces which depends only on the remote applied stress fields. Within the crack slit, the perturbed electric fields induced by the crack are also constant and not affected by the applied electric displacement fields. For bimaterials, generally speaking, an interface crack exhibits oscillatory behavior and the normal electric displacement D-2 is a complex function along the crack faces. However, for bimaterials, having certain symmetry, in which an interface crack displays no oscillatory behavior, it is observed that the normal electric displacement D-2 is also constant along the crack faces and the electric field E-2 has the singularity ahead of the crack tip and has a jump across the interface. Energy release rates are established for homogeneous materials and bimaterials having certain symmetry. Both the crack front parallel to the poling axis and perpendicular to the poling axis are discussed. It is revealed that the energy release rates are always positive for stable materials and the applied electric displacements have no contribution to the energy release rates.
Resumo:
A three-phase piezoelectric cylinder model is proposed and an exact solution is obtained for the model under a farfield antiplane mechanical load and a far-field inplane electrical load. The three-phase model can serve as a fiber/interphase layer/matrix model, in terms of which a lot of interesting mechanical and electrical coupling phenomena induced by the interphase layer are revealed. It is found that much more serious stress and electrical field concentrations occur in the model with the interphase layer than those without any interphase layer. The three-phase model can also serve as a fiber/matrix/composite model, in terms of which a generalized self-consistent approach is developed for predicting the effective electroelastic moduli of piezoelectric composites. Numerical examples are given and discussed in detail.