50 resultados para Peptide natriurétique de l’oreillette
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by “GAMESS”, and the rest atoms are treated as MM part calculated by “TINKER”. The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with theQMpart with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(1 0 0) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the imidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
Molecular dynamics (MD) simulations are performed to study the interaction of His-tagged peptide with three different metal surfaces in explicit water. The equilibrium properties are analyzed by using pair correlation functions (PCF) to give an insight into the behavior of the peptide adsorption to metal surfaces in water solvent. The intermolecular interactions between peptide residues and the metal surfaces are evaluated. By pulling the peptide away from the peptide in the presence of solvent water, peeling forces are obtained and reveal the binding strength of peptide adsorption on nickel, copper and gold. From the analysis of the dynamics properties of the peptide interaction with the metal surfaces, it is shown that the affinity of peptide to Ni surface is the strongest, while on Cu and An the affinity is a little weaker. In MD simulations including metals, the His-tagged region interacts with the substrate to an extent greater than the other regions. The work presented here reveals various interactions between His-tagged peptide and Ni/Cu/Au surfaces. The interesting affinities and dynamical properties of the peptide are also derived. The results give predictions for the structure of His-tagged peptide adsorbing on three different metal surfaces and show the different affinities between them, which assist the understanding of how peptides behave on metal surfaces and of how designers select amino sequences in molecule devices design. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The hybrid quantum mechanics (QM) and molecular mechanics (MM) method is employed to simulate the His-tagged peptide adsorption to ionized region of nickel surface. Based on the previous experiments, the peptide interaction with one Ni ion is considered. In the QM/MM calculation, the imidazoles on the side chain of the peptide and the metal ion with several neighboring water molecules are treated as QM part calculated by "GAMESS", and the rest atoms are treated as MM part calculated by "TINKER". The integrated molecular orbital/molecular mechanics (IMOMM) method is used to deal with the QM part with the transitional metal. By using the QM/MM method, we optimize the structure of the synthetic peptide chelating with a Ni ion. Different chelate structures are considered. The geometry parameters of the QM subsystem we obtained by QM/MM calculation are consistent with the available experimental results. We also perform a classical molecular dynamics (MD) simulation with the experimental parameters for the synthetic peptide adsorption on a neutral Ni(100) surface. We find that half of the His-tags are almost parallel with the substrate, which enhance the binding strength. Peeling of the peptide from the Ni substrate is simulated in the aqueous solvent and in vacuum, respectively. The critical peeling forces in the two environments are obtained. The results show that the in-tidazole rings are attached to the substrate more tightly than other bases in this peptide.
Resumo:
One of existing strategies to engineer active antibody is to link VH and VL domains via a linker peptide. How the composition, length, and conformation of the linker affect antibody activity, however, remains poorly understood. In this study, a dual approach that coordinates molecule modeling, biological measurements, and affinity evaluation was developed to quantify the binding activity of a novel stable miniaturized anti-CD20 antibody or singlechain fragment variable (scFv) with a linker peptide. Upon computer-guided homology modeling, distance geometry analysis, and molecular superimposition and optimization, three new linker peptides PT1, PT2, and PT3 with respective 7, 10, and 15 residues were proposed and three engineered antibodies were then constructed by linking the cloned VH and VL domains and fusing to a derivative of human IgG1. The binding stability and activity of scFv-Fc chimera to CD20 antigen was quantified using a micropipette adhesion frequency assay and a Scatchard analysis. Our data indicated that the binding affinity was similar for the chimera with PT2 or PT3 and ~24-fold higher than that for the chimera with PT1, supporting theoretical predictions in molecular modeling. These results further the understanding in the impact of linker peptide on antibody structure and activity.
Resumo:
Amphibian skin contains rich bradykinin-related peptides, but the mode of biosynthesis of these peptides is unknown. In the present study, a novel bradykinin-related peptide, termed bombinakinin M, was purified from skin secretions of the Chinese red bell
Resumo:
Amphibian skin is a rich resource of antimicrobial peptides like maximins and maximins H from toad Bombina maxima. A novel cDNA clone encoding a precursor protein that comprises maximin 3 and a novel peptide. named maximin H5. was isolated from a skin cDNA library of B. maxima. The predicted primary structure of maximin H5 is ILGPVLGLVSDTLDDVLGIL-NH2,. Containing three aspartate residues and no basic amino acid residues. maximin H5 is characterized by an anionic property. Different from cationic maximin H peptides. only Gram-positive strain Staphylococcus aureus was sensitive to maximin H5. while the other bacteria] and fungal strains tested ere resistant to it. The presence of metal ions. like Zn2+ and Mg2+, did not increase its antimicrobial potency. Maximin H5 represents the first example of potential anionic antimicrobial peptides from amphibians, The results provide the first evidence that. together kith cationic antimicrobial peptides. anionic antimicrobial peptides may also exist naturally as part of the innate defense system. (C), 2002 Elsevier Science (USA). All rights reserved.
Resumo:
A novel bombesin-related peptide was isolated from skin secretions of Chinese red belly toad Bombina maxima. Its primary structure was established as pGlu-Lys-Lys-Pro-Pro-Arg-Pro-Pro-Gln-Trp-Ala-Val-Gly-His-Phe-Met-NH2. The amino-terminal (N-terminal) 8-residue segment comprising four prolines and three basic residues is extensively different from bombesins from other Bombina species. The peptide was thus named proline rich bombesin (PR-bombesin). PR-bumbesin was found to elicit concentration-dependent contractile effects in the rat stomach strip, with both increased potency and intrinsic activity as compared with those of [Leu(13)]bombesin. Analysis of different bombesin cDNA structures revealed that an 8 to 14- nucleotide fragment replacement in the peptide coding region (TGGGGAAT in the cDNAs of multiple bombesin forms from Bombina orientalis and CACCCCGGCCACCC in the cDNA of PR-bombesin) resulted in an unusual Pro-Pro-Arg-Pro-Pro motif in the N-terminal part of PR-bombesin. (C) 2002 Elsevier Science Inc. All rights reserved.
Resumo:
An opioid peptide, which shares similarity with mammalian hemorphins, has been identified from the synganglia (central nervous system) of the hard tick, Amblyomma testindiarium. Its primary sequence was established as LVVYPWTKM that contains a tetrapeptide sequence Tyr-Pro-Trp-Thr of hemorphin-like opioid peptides. By hot-plate bioassay, the purified peptide and synthetic peptide displayed dose-related antinociceptive effect in mice, as observed for other hemorphin-like opioid peptides. This is the first opioid peptide identified from ticks. Ticks may utilize the opioid peptide in their strategy to escape host immuno-surveillance as well as in inhibiting responses directed against themselves. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
A novel antimicrobial peptide named as ixosin was isolated from the salivary glands of the hard tick, Ixodes sinensis, by gel filtration, ion exchange chromatography and reverse-phase high-performance liquid chromatography (RP-HPLC). Its amino acid sequen
Resumo:
Several algesic agents including bradykinin and tachykinin have been identified from skin secretions of amphibians. They may act in defensive roles against aggressors. In this study, a novel peptide named Amolos with an amino acid sequence of FLPIVGAKL an
Resumo:
A novel 28-amino acid peptide, termed bombinakinin-GAP, was purified and characterized from skin secretions of the toad Bombina maxima. Its primary structure was established as DMYEIKQYKTAHGRPPICAPGEQCPIWV-NH2, in which two cysteines form a disulfide bond. A FASTA search of SWISS-PROT databank detected a 32% sequence identity between the sequences of the peptide and a segment of rat cocaine- and amphetamine-regulated transcript (CART). Intracerebroventricular (i.c.v.) administration of the peptide induced a significant decrease in food intake in rats, suggesting that it played a role in the control of feeding by brain. Analysis of its cDNA structure revealed that this peptide is coexpressed with bombinakinin M, a bradykinin-related peptide from the same toad. Bombinakinin-GAP appears to be the first example of a novel class of bioactive peptides from amphibian skin, which may be implicated in feeding behavior. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
An antimicrobial peptide named odorranain-HP was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLRASSVWGRKYYVDLAGCAKA. By BLAST search, odorranain-HP had si
Resumo:
Despite the evolutional distance between wasp and amphibian, vespid chemotactic peptide (VCP), an important component of wasp venom, are found sharing remarkable similarities with the temporin antimicrobial peptides (AMPs) from Ranid frog, Amolops loloens