13 resultados para Path integral approach

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important concept proposed in the early stage of robot path planning field is the shrinking of the robot to a point and meanwhile expanding of the obstacles in the workspace as a set of new obstacles. The resulting grown obstacles are called the Configuration Space (Cspace) obstacles. The find-path problem is then transformed into that of finding a collision free path for a point robot among the Cspace obstacles. However, the research experiences obtained so far have shown that the calculation of the Cspace obstacles is very hard work when the following situations occur: 1. both the robot and obstacles are not polygons and 2. the robot is allowed to rotate. This situation is even worse when the robot and obstacles are three dimensional (3D) objects with various shapes. Obviously a direct path planning approach without the calculation of the Cspace obstacles is strongly needed. This paper presents such a new real-time robot path planning approach which, to the best of our knowledge, is the first one in the robotic community. The fundamental ideas are the utilization of inequality and optimization technique. Simulation results have been presented to show its merits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We generalize the Faddeev-Jackiw canonical path integral quantization for the scenario of a Jacobian with J=1 to that for the general scenario of non-unit Jacobian, give the representation of the quantum transition amplitude with symplectic variables and obtain the generating functionals of the Green function and connected Green function. We deduce the unified expression of the symplectic field variable functions in terms of the Green function or the connected Green function with external sources. Furthermore, we generally get generating functionals of the general proper vertices of any n-points cases under the conditions of considering and not considering Grassmann variables, respectively; they are regular and are the simplest forms relative to the usual field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A hierarchical equations of motion formalism for a quantum dissipation system in a grand canonical bath ensemble surrounding is constructed on the basis of the calculus-on-path-integral algorithm, together with the parametrization of arbitrary non-Markovian bath that satisfies fluctuation-dissipation theorem. The influence functionals for both the fermion or boson bath interaction are found to be of the same path integral expression as the canonical bath, assuming they all satisfy the Gaussian statistics. However, the equation of motion formalism is different due to the fluctuation-dissipation theories that are distinct and used explicitly. The implications of the present work to quantum transport through molecular wires and electron transfer in complex molecular systems are discussed. (c) 2007 American Institute of Physics.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The identification of kinetic pathways is a central issue in understanding the nature of flexible binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. The kinetic time can be obtained through the contributions from the dominant paths and has a U-shape dependence on temperature.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Biomolecular recognition often involves large conformational changes, sometimes even local unfolding. The identification of kinetic pathways has become a central issue in understanding the nature of binding. A new approach is proposed here to study the dynamics of this binding-folding process through the establishment of a path-integral framework on the underlying energy landscape. The dominant kinetic paths of binding and folding can be determined and quantified. The significant coupling between the binding and folding of biomolecules often exists in many important cellular processes. In this case, the corresponding kinetic paths of binding are shown to be intimately correlated with those of folding and the dynamics becomes quite cooperative. This implies that binding and folding happen concurrently. When the coupling between binding and folding is weak (strong), the kinetic process usually starts with significant folding (binding) first, with the binding (folding) later proceeding to the end. The kinetic rate can be obtained through the contributions from the dominant paths. The rate is shown to have a bell-shaped dependence on temperature in the concentration-saturated regime consistent with experiment. The changes of the kinetics that occur upon changing the parameters of the underlying binding-folding energy landscape are studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

According to the method of path integral quantization for the canonical constrained system in Becchi-Rouet-Stora-Tyutin scheme, the supersymmetric electromagnetic interaction system was quantized. Both the Hamiltonian of the supersymmetric electromagnetic interaction system in phase space and the quantization procedure were simplified. The BRST generator was constructed, and the BRST transformations of supersymmetric fields were gotten; the effective action was calculated, and the generating functional for the Green function was achieved; also, the gauge generator was constructed, and the gauge transformation of the system was obtained. Finally, the Ward-Takahashi identities based on the canonical Noether theorem were calculated, and two relations between proper vertices and propagators were obtained.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

提出一种基于遗传算法的三维动态环境下的路径规划方法,通过对机器人的运动行为进行编码,将各种约束条件融入到遗传算法当中,规划出可实际应用的避障路径,仿真研究表明该方法是简单有效的。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

主要研究了移动机器人在未知动态环境中的路径规划问题.提出一种将障碍预估与概率方向权值相结合的动态路径规划新方法.该方法将卡尔曼滤波引入到规划算法中,使得对障碍物运动状态的实时有效预估成为可能.同时,为实现移动机器人的实时路径规划,提出一种新的概率方向权值方法,基于周期规划将障碍物与目标信息进行融合,能够有效处理室内环境下对于障碍物的速度和运动轨迹均未知的动态路径规划问题.仿真结果以及基于SmartROB2移动机器人平台所进行的实验结果验证了该方法的有效性和实用性.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary approaches for people to understand the inner properties of the earth and the distribution of the mineral resources are mainly coming from surface geology survey and geophysical/geochemical data inversion and interpretation. The purpose of seismic inversion is to extract information of the subsurface stratum geometrical structures and the distribution of material properties from seismic wave which is used for resource prospecting, exploitation and the study for inner structure of the earth and its dynamic process. Although the study of seismic parameter inversion has achieved a lot since 1950s, some problems are still persisting when applying in real data due to their nonlinearity and ill-posedness. Most inversion methods we use to invert geophysical parameters are based on iterative inversion which depends largely on the initial model and constraint conditions. It would be difficult to obtain a believable result when taking into consideration different factors such as environmental and equipment noise that exist in seismic wave excitation, propagation and acquisition. The seismic inversion based on real data is a typical nonlinear problem, which means most of their objective functions are multi-minimum. It makes them formidable to be solved using commonly used methods such as general-linearization and quasi-linearization inversion because of local convergence. Global nonlinear search methods which do not rely heavily on the initial model seem more promising, but the amount of computation required for real data process is unacceptable. In order to solve those problems mentioned above, this paper addresses a kind of global nonlinear inversion method which brings Quantum Monte Carlo (QMC) method into geophysical inverse problems. QMC has been used as an effective numerical method to study quantum many-body system which is often governed by Schrödinger equation. This method can be categorized into zero temperature method and finite temperature method. This paper is subdivided into four parts. In the first one, we briefly review the theory of QMC method and find out the connections with geophysical nonlinear inversion, and then give the flow chart of the algorithm. In the second part, we apply four QMC inverse methods in 1D wave equation impedance inversion and generally compare their results with convergence rate and accuracy. The feasibility, stability, and anti-noise capacity of the algorithms are also discussed within this chapter. Numerical results demonstrate that it is possible to solve geophysical nonlinear inversion and other nonlinear optimization problems by means of QMC method. They are also showing that Green’s function Monte Carlo (GFMC) and diffusion Monte Carlo (DMC) are more applicable than Path Integral Monte Carlo (PIMC) and Variational Monte Carlo (VMC) in real data. The third part provides the parallel version of serial QMC algorithms which are applied in a 2D acoustic velocity inversion and real seismic data processing and further discusses these algorithms’ globality and anti-noise capacity. The inverted results show the robustness of these algorithms which make them feasible to be used in 2D inversion and real data processing. The parallel inversion algorithms in this chapter are also applicable in other optimization. Finally, some useful conclusions are obtained in the last section. The analysis and comparison of the results indicate that it is successful to bring QMC into geophysical inversion. QMC is a kind of nonlinear inversion method which guarantees stability, efficiency and anti-noise. The most appealing property is that it does not rely heavily on the initial model and can be suited to nonlinear and multi-minimum geophysical inverse problems. This method can also be used in other filed regarding nonlinear optimization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventional J_2 deformation theory No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory Two typical crack Problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-I K-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, the J-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method is proposed to solve the closure problem of turbulence theory and to drive the Kolmogorov law in an Eulerian framework. Instead of using complex Fourier components of velocity field as modal parameters, a complete set of independent real parameters and dynamic equations are worked out to describe the dynamic states of a turbulence. Classical statistical mechanics is used to study the statistical behavior of the turbulence. An approximate stationary solution of the Liouville equation is obtained by a perturbation method based on a Langevin-Fokker-Planck (LFP) model. The dynamic damping coefficient eta of the LFP model is treated as an optimum control parameter to minimize the error of the perturbation solution; this leads to a convergent integral equation for eta to replace the divergent response equation of Kraichnan's direct-interaction (DI) approximation, thereby solving the closure problem without appealing to a Lagrangian formulation. The Kolmogorov constant Ko is evaluated numerically, obtaining Ko = 1.2, which is compatible with the experimental data given by Gibson and Schwartz, (1963).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a novel robot named "TUT03-A" with expert systems, speech interaction, vision systems etc. based on remote-brained approach. The robot is designed to have the brain and body separated. There is a cerebellum in the body. The brain with the expert systems is in charge of decision and the cerebellum control motion of the body. The brain-body. interface has many kinds of structure. It enables a brain to control one or more cerebellums. The brain controls all modules in the system and coordinates their work. The framework of the robot allows us to carry out different kinds of robotics research in an environment that can be shared and inherited over generations. Then we discuss the path planning method for the robot based on ant colony algorithm. The mathematical model is established and the algorithm is achieved with the Starlogo simulating environment. The simulation result shows that it has strong robustness and eligible pathfinding efficiency.