146 resultados para Palladium species
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The reaction mechanism of Pd(O)-catalyzed allene bis-selenation reactions is investigated by using density functional methods. The overall reaction mechanism has been examined. It is found that with the bulkier PMe3 ligand, the rate-determining step is the reductive elimination process, while allene insertion and reductive elimination processes are competitive for the rate-determining step with the PH3 ligand, indicating the importance of the ligand effect. For both cis and trans palladium complexes, allene insertion into the Pd-Se bond of the trans palladium complex using the internal carbon atom attached to the selenyl group is prefer-red among the four pathways of allene insertion processes. The formation of sigma-allyl and pi-allyl palladium complexes is favored over that of the sigma-vinyl palladium species. By using methylallene, the regioselectivity of monosubstituted allene insertion into the Pd-Se bond is analyzed.
Resumo:
The Heck reaction of iodobenzene and methyl acrylate was investigated with CO2-philic Pd complex catalysts having fluorous ponytails and the organic base triethylamine (Et3N) in the presence of CO2 under solventless conditions at 80 degrees C. The catalysts are not soluble in the organic phase in the absence Of CO2 and the reaction occurs in a solid-liquid biphasic system. When the organic liquid mixture is pressurized by CO2, CO2 is dissolved into the organic phase and this promotes the dissolution of the I'd complex catalysts. As a result, the Heck reaction occurs homogeneously in the organic phase, which enhances the rate of reaction. This positive effect Of CO2 pressurization competes with the negative effect that the reacting species are diluted by an increasing amount of CO2 molecules dissolved. Thus, the maximum conversion appears at a CO2 pressure of around 4 MPa under the present reaction conditions. The catalysts are separated in the solid granules by depressurization and are recyclable without loss of activity after washing with n-hexane and/or water.
Resumo:
Bronsted acid-base ionic liquids (GILs) based on guanidine and acetic acid are efficient reaction media for palladium-catalyzed Heck reactions. They offer the advantages of high activity and reusability. GIL2 plays multiple roles in the reaction: it could act as solvent, as a strong base to facilitate beta-hydride elimination, and as a ligand to stabilize activated Pd species.
Resumo:
A novel complex - palladium-coordinated ate-type liquid crystalline dendrimer was synthesized by a divergent approach, The product showed liquid crystalline properties from 115 degrees C to 187 degrees C, and it belonged to dinuclear species, containing two palladium centers linked by two bridging Cl, each palladium atom completes its coordinations with N atom and a sigma bond to an ortho-carbon in the phenyl ring. The microanalytical values obtained for the product are in agreement with those of compound containing ligand, palladium:and chlorine in a molar ratio of 1 : 1 : 1 and 12 palladium atoms for every scaffold.
Resumo:
The adsorption of CO on Al(2)O(3), ZrO(2), ZrO(2)-SiO(2), and ZrO(2)-La(2)O(3) supported Pd catalysts was studied by adsorption microcalorimetry and infrared (TR) spectroscopy. Some interesting and new correlations between the results of microcalorimetry and IR spectroscopy have been found. The CO is adsorbed on palladium catalysts in three different modes: multibonded (3-fold), bridged (2-fold), both on Pd(lll) and (100) planes, and linear (1-fold) adsorbed species. The corresponding differential adsorption heats lie in the field of high (210-170 kJ/mol), medium (140-120 kJ/mol), and low (95-60 kJ/mol) values, respectively. The nature of the support, the reduction temperature, and the pretreatment conditions affect the surface structure of the Pd catalysts, resulting in variations in the site energy distribution, i.e., changes in the fraction of sites adsorbing CO with specific heats of adsorption. Moreover, the CeO(2); promoter addition weakens the adsorption strength of CO on palladium. Based on the exposed results, a correctness factor, which considers the percentages of various CO adsorption states, must be introduced when one calculates the Pd dispersion using CO adsorption data.