83 resultados para Pairing symmetry
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a(sym)/T, as a function of fragment mass A. The extracted values increase from 5 to similar to 16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code GEMINI. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are similar to 4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.
Resumo:
The isospin dependence of the effective pairing interaction is discussed on the basis of the Bardeen, Cooper, and Schrieffer theory of superfluid asymmetric nuclear matter. It is shown that the energy gap, calculated within the mean field approximation in the range from symmetric nuclear matter to pure neutron matter, is not linearly dependent on the symmetry parameter owing to the nonlinear structure of the gap equation. Moreover, the construction of a zero-range effective pairing interaction compatible with the neutron and proton gaps in homogeneous matter is investigated, along with some recent proposals of isospin dependence tested on the nuclear data table.
Resumo:
It is shown that for the screened Coulomb potential and isotropic harmonic oscillator, there exists an infinite number of closed orbits for suitable angular momentum values. At the aphelion (perihelion) points of classical orbits, an extended Runge-Lenz vector for the screened Coulomb potential and an extended quadrupole tensor for the screened isotropic harmonic oscillator are still conserved. For the screened two-dimensional (2D) Coulomb potential and isotropic harmonic oscillator, the dynamical symmetries SO3 and SU(2) are still preserved at the aphelion (perihelion) points of classical orbits, respectively. For the screened 3D Coulomb potential, the dynamical symmetry SO4 is also preserved at the aphelion (perihelion) points of classical orbits. But for the screened 3D isotropic harmonic oscillator, the dynamical symmetry SU(2) is only preserved at the aphelion (perihelion) points of classical orbits in the eigencoordinate system. For the screened Coulomb potential and isotropic harmonic oscillator, only the energy (but not angular momentum) raising and lowering operators can be constructed from a factorization of the radial Schrodinger equation.
Resumo:
For a n-dimensional vector fields preserving some n-form, the following conclusion is reached by the method of Lie group. That is, if it admits an one-parameter, n-form preserving symmetry group, a transformation independent of the vector field is constructed explicitly, which can reduce not only dimesion of the vector field by one, but also make the reduced vector field preserve the corresponding ( n - 1)-form. In partic ular, while n = 3, an important result can be directly got which is given by Me,ie and Wiggins in 1994.
Resumo:
In this paper the symmetries of coupled map lattices (CMLs) and their attractors are investigated by group and dynamical system theory, as well as numerical simulation, by means of which the kink-antikink patterns of CMLs in space-amplitude plots are discussed.
Receptivity to free-stream disturbance waves for blunt cone axial symmetry hypersonic boundary layer
Resumo:
Based on high-order compact upwind scheme, a high-order shock-fitting finite difference scheme is studied to simulate the generation of boundary layer disturbance waves due to free-stream waves. Both steady and unsteady flow solutions of the receptivity problem are obtained by resolving the full Navier-Stokes equations. The interactions of bow-shock and free-stream disturbance are researched. Direct numerical simulation (DNS) of receptivity to free-stream disturbances for blunt cone hypersonic boundary layers is performed.
Resumo:
We address the influence of the orbital symmetry and the molecular alignment with respect to the laser-field polarization on laser-induced nonsequential double ionization of diatomic molecules, in the length and velocity gauges. We work within the strong-field approximation and assume that the second electron is dislodged by electron-impact ionization, and also consider the classical limit of this model. We show that the electron-momentum distributions exhibit interference maxima and minima due to electron emission at spatially separated centers. The interference patterns survive integration over the transverse momenta for a small range of alignment angles, and are sharpest for parallel-aligned molecules. Due to the contributions of the transverse-momentum components, these patterns become less defined as the alignment angle increases, until they disappear for perpendicular alignment. This behavior influences the shapes and the peaks of the electron-momentum distributions.
Resumo:
The Talbot effect is one of the most basic optical phenomena that has received extensive investigations both because its new results provide us more understanding of the fundamental Fresnel diffraction and also because of its wide applications. We summarize our recent results on this subject. Symmetry of the Talbot effect, which was reported in Optics Communications in 1995, is now realized as the key to reveal other rules for explanation of the Talbot effect for array illumination. The regularly rearranged-neighboring-phase-differences (RRNPD) rule, a completely new set of analytic phase equations (Applied Optics, 1999), and the prime-number decomposing rule (Applied Optics, 2001) are the newly obtained results that reflect the symmetry of the Talbot effect in essence. We also reported our results on the applications of the Talbot effect. Talbot phase codes are the orthogonal codes that can be used for phase coding of holographic storage. A new optical scanner based on the phase codes for Talbot array illumination has unique advantages. Furthermore, a novel two-layered multifunctional computer-generated hologram based on the fractional Talbot effect was proposed and implemented (Optics Letters, 2003). We believe that these new results should bring us more new understanding of the Talbot effect and help us to design novel optical devices that should benefit practical applications. (C) 2004 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A novel method for measuring the coma of a lithographic projection system is proposed and the principle of the method is described. By utilizing mirror-symmetry marks, the adverse effects of axial aberrations on the coma measurement are avoided. Experimental results demonstrated that the method has high accuracy. Compared with TAMIS, the conventional technique used for coma measurement, the method is more reliable because the influences of the process factors on the lateral displacements have been considered. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The numerical simulation of the wavefronts diffracted by apertures with circular symmetry is realized by a numerical method. It is based on the angular spectrum of plane waves, which ignored the vector nature of light. The on-axial irradiance distributions of plane wavefront and Gauss wavefront diffracted by the circular aperture have been calculated along the propagation direction. Comparisons of the simulation results with the analytical results and the experimental results tell us that it is a feasible method to calculate the diffraction of apertures. (c) 2006 Published by Elsevier GmbH.
Resumo:
Peptide nucleic acids (PNAs) are nucleic acid analogs with the deoxyribose phosphate backbone replaced by pseudo-peptide polymers to which the nucleobases are linked. The achiral, uncharged and rather flexible properties of the peptide backbone permit peptide nucleic acids more potential than oligonucleotides in application to antisence and antigenic reagents. The process of PNA binding to DNA duplex and forming triplex is the first step of PNA interacting with PNA. But there are no PNA.2DNA triplex crystal data up to date and little has been reported on the structure features and the force of the PNA.2DNA triplex. In this work, PNA(T).DNA(AT) triplexes are successfully built and the structures and forces to stabilize the triplex after optimizations and molecule dynamics are systematically examined, which are expected to aid in the application of PNAs as anticense and antigene agents.