15 resultados para PROFILING.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).
Resumo:
Detailed X-ray photoelectron spectroscopy (XPS) depth profiling measurements were performed across the back n-layer/transparent conducting oxide (n/TCO) inter-faces for superstrate p-i-n solar cells to examine differences between amorphous silicon (a-Si:H) and microcrystalline silicon (mu c-Si:H) n-layer materials as well as TCO materials ZnO and ITO in the chemical, microstructural and diffusion properties of the back interfaces. No chemical reduction of TCO was found for all variations of n-layer/TCO interfaces. We found that n-a-Si:H interfaces better with ITO, while n-mu c-Si:H, with ZnO. A cross-comparison shows that the n-a-Si:H/ITO interface is superior to the n-mu c-Si:H/ZnO interface, as evidenced by the absence of oxygen segregation and less oxidized Si atoms observed near the interface together with much less diffusion of TCO into the n-layer. The results suggest that the n/TCO interface properties are correlated with the characteristics of both the n-layer and the TCO layer. Combined with the results reported on the device performance using similar back n/TCO contacts, we found the overall device performance may depend on both interface and bulk effects related to the back n/TCO contacts. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).
Resumo:
The conduction-band offset Delta E-C has been determined for a molecular beam epitaxy grown GaAs/In0.2Ga0.8As single quantum-well structure, by measuring the capacitance-voltage (C - V) profiling, taking into account a correction for the interface charge density, and the capacitance transient resulting from thermal emission of carriers from the quantum well, respectively. We found that Delta E-C = 0.227 eV, corresponding to about 89% Delta E-g, from the C - V profiling; and Delta E-C = 0.229eV, corresponding to about 89.9% Delta E-g, from the deep-level transient spectroscopy (DLTS) technique. The results suggest that the conduction-band discontinuity Delta E-C obtained from the C-V profiling is in good agreement with that obtained from the DLTS technique. (C) 1998 American Institute of Physics.
Resumo:
We describe a new molecular approach to analyzing the genetic diversity of complex microbial populations. This technique is based on the separation of polymerase chain reaction-amplified fragments of genes coding for 16S rRNA, all the same length, by denaturing gradient gel electrophoresis (DGGE). DGGE analysis of different microbial communities demonstrated the presence of up to 10 distinguishable bands in the separation pattern, which were most likely derived from as many different species constituting these populations, and thereby generated a DGGE profile of the populations. We showed that it is possible to identify constituents which represent only 1% of the total population. With an oligonucleotide probe specific for the V3 region of 16S rRNA of sulfate-reducing bacteria, particular DNA fragments from some of the microbial populations could be identified by hybridization analysis. Analysis of the genomic DNA from a bacterial biofilm grown under aerobic conditions suggests that sulfate-reducing bacteria, despite their anaerobicity, were present in this environment. The results we obtained demonstrate that this technique will contribute to our understanding of the genetic diversity of uncharacterized microbial populations.
Resumo:
Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats.
Resumo:
The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of H-1 NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. H-1 NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the Perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar.
Resumo:
Metabolic profiling of serum from gadolinium chloride (GdCl3, 10 and 50 mg/kg body weight, intraperitoneal [i.p.])-treated rats was investigated by the NMR spectroscopic-based metabonomic strategy. Serum samples were collected at 48, 96, and 168 h postdose (p.d.) after exposure to GdCl3. H-1 NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The studies showed that there was a dose-related biochemical effect of GdCl3 treatment on the levels of a range of low-molecular weight compounds in serum. The liver damage induced by GdCl3 was characterized by the elevation of lactate, pyruvate, and creatine as well as the decrease of branched-chain amino acids (valine and isoleucine), alanine, glucose, and trimethylamine-N-oxide concentration in serum samples. The biochemical effects of GdCl3 in rats could be consulted when evaluating the biochemical profile of gadolinium-containing compounds that are being developed for nuclear magnetic resonance imaging.
Resumo:
There is a need to obtain the hydrologic data including ocean current, wave, temperature and so on in the South China Sea. A new profiling instrument which does not suffer from the damage due to nature forces or incidents caused by passing ships, is under development to acquire data from this area. This device is based on a taut single point mid-water mooring system. It incorporates a small, instrumented vertically profiling float attached via an electromechanical cable to a winch integral with the main subsurface flotation. On a pre-set schedule, the instrument float with sensors is winched up to the surface if there is no strip passing by, which is defined by an on-board miniature sonar. And it can be immediately winched down to a certain depth if the sonar sensor finds something is coming. Since, because Of logistics, the area can only be visited once for a long time and a minimum of 10 times per day profiles are desired, energy demands are severe. To respond to these concerns, the system has been designed to conserve a substantial portion of the potential energy lost during the ascent phase of each profile and subsequently use this energy to pull the instrument down. Compared with the previous single-point layered measuring mode, it is advanced and economical. At last the paper introduces the test in the South China Sea.
Resumo:
Random amplified polymorphic DNA ( RAPD) markers were used to measure genetic diversity of Coelonema draboides ( Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P. R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% ( 161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.