4 resultados para Nanoscratch
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The diamond-like carbon (DLC) films with different thicknesses on 9Crl8 bearing steels were prepared using vacuum magnetic-filtering arc plasma deposition. Vickers indentation. nanoin-dentation and nanoscratch tests were used to characterize the DLC films with a wide range of applied loads. Mechanical and tribological behaviors of these submicron films were investigated and interpreted. The hardnesses of 9Crl8 and DLC, determined by nanoindentation, are approximately 8GPa and 60GPa respectively; their elastic moduli are approximately 25OGPa and 600GPa respectively. The friction coefficients of 9Crl8, DLC. organic coating, determined by nanoscratch, are approximately 0. 35, 0. 20 and 0. 13 respectively. It is demonstrated that nanoindentation and nanoscratch tests can provide more information about the near-surface elastic-plastic deformation, friction and wear properties. The correlation of mechanical properties and scratch resistance of DLC films on 9Crl8 steels can provide an assessment for the load-carrying capacity and wear resistance
Resumo:
Nanoindentation and nanoscratch tests were performed for titanium nitride (TiN) coatings on different tool steel substrates to investigate the indentation/scratch induced deformation behavior of the coatings and the adhesion of the coating–substrate interfaces and their tribological property. In this work, TiN coatings with a thickness of about 500 nm were grown on GT35, 9Cr18 and 40CrNiMo steels using vacuum magnetic-filtering arc plasma deposition. In the nanoindentation tests, the hardness and modulus curves for TiN/GT35 reduced the slowest around the film thickness 500 nm with the increase of indentation depth, followed by TiN/9Cr18 and TiN/40CrNiMo. Improving adhesion properties of coating and substrate can decrease the differences of internal stress field. The scratch tests showed that the scratch response was controlled by plastic deformation in the substrate. The substrate plays an important role in determining the mechanical properties and wear resistance of such coatings. TiN/GT35 exhibited the best load-carrying capacity and scratch/wear resistance. As a consequence, GT35 is the best substrate for TiN coatings of the substrate materials tested.
Resumo:
采用等离子电弧沉积的方法,分别在GT35和40CrNiMo钢上沉积厚约为0.5μm的氮化钛(TiN)膜。为了筛选基材,采用纳米压痕和划痕技术,评价膜基界面结合和固体润滑效果。纳米压痕结果,GT35,40CrNiMo和TiN的纳米硬度/弹性模量的典型值分别约为11.5 GPa/330GPa, 6.0 GPa/210GPa, 30GPa/450GPa。纳米划痕结果,GT35有较理想的膜基结合能力;GT35,40CrNiMo,TiN及其有机膜的磨擦系数分别约为0.25,0.45,0.15, 0.10。同40CrNiMo相比,GT35是较为理想的基体材料。纳米压痕和划痕技术能提供丰富的近表面的弹塑性变形、断裂和磨擦等的信息,是评价亚微米薄膜力学性能的有效手段。
Resumo:
Nanometer-scale plowing friction and wear of a polycarbonate thin film were directly measured using an atomic force microscope (AFM) with nanoscratching capabilities. During the nanoscratch tests, lateral forces caused discrepancies between the maximum forces for the initial loadings prior to the scratch and the unloading after the scratch. In the case of a nanoscratch test performed parallel to the cantilever probe axis, the plowing friction added another component to the moment acting at the cantilevered end compared to the case of nanoindentation, resulting in an increased deflection of the cantilever. Using free-body diagrams for the cases of nanoindentation and nanoscratch testing, the AFM force curves were analyzed to determine the plowing friction during nanoscratch testing. From the results of this analysis, the plowing friction was found to be proportional to the applied contact force, and the coefficient of plowing friction was measured to be 0.56 +/- 0.02. Also, by the combination of nanoscratch and nanoindentation testing, the energetic wear rate of the polycarbonate thin film was measured to be 0.94 +/- 0.05 mm(3)/(N m).