18 resultados para Metastable phase
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Stabilization effect on metastable phase II of isotactic polybutene-1 (iPB-1) by coated carbon has been investigated by transmission electron microscopy (TEM) and electron diffraction (ED) techniques. The results indicate that after evaporating carbon, the phase II-I crystal transformation time is greatly prolonged from 9 days for carbon-uncoated samples to 120 days for carbon-coated ones under atmospheric pressure, while under high pressure (50 bar), the phase transformation time increases from 5 min for the former to 20 min for the latter. The stabilization effect on metastable phase II of carbon coated iPB-1 is attributed to a surface fixing effect of the evaporated carbon.
Resumo:
Crystallization and phase transition behaviors of n-nonadecane in microcapsules with a diameter of about 5 mu m were studied with the combination of differential scanning calorimetry ( DSC) and synchrotron radiation X-ray diffraction ( XRD). As evident from the DSC measurement, a surface freezing monolayer, which is formed in the microcapsules before the bulk crystallization, induces a novel metastable rotator phase ( RII), which has not been reported anywhere else. We argue that the existence of the surface freezing monolayer decreases the nucleating potential barrier of the RII phase and induces its appearance, while the lower free energy in the confined geometry turns the transient RII phase to a " long- lived" metastable phase.
Resumo:
The phase transition behavior of a thermotropic liquid crystalline poly(aryl ether ketone) synthesized by nucleophilic substitution reactions of 4,4'-biphenol (BP), and chlorohydroquinone (CH) with 1,4-bis(4-fluorobenzoyl)benzene (BF) has been investigated by differential scanning calorimetry (DSC) and wide angle X-ray diffraction (WAXD). The copolymer exhibits multiple first order phase transitions, which are associated with crystal-to-smectic liquid crystal transition and smectic liquid crystal-to-isotropic transition. When the cooling rate is low (<10
Resumo:
We report on the epitaxial growth and the microstructure of cubic GaN. The layers are deposited by plasma-assisted molecular beam epitaxy on GaAs and Si substrates. Despite the extreme lattice mismatch between these materials, GaN grows in the metastable cubic phase with a well-defined orientation-relationship to the GaAs substrate including a sharp heteroboundary. The preference of the metastable phase and its epitaxial orientation originates in the interface structure which is found to be governed by a coincidence site lattice.
Resumo:
High quality cubic GaN (c-GaN) is grown by metalorganic vapor deposition (MOCVD) at an increased growth temperature of 900 ℃, with the growth rate of 1.6 μm/h. The full width at half maximum (FWHM) of room temperature photoluminescence (PL) for the high temperature grown GaN film is 48meV. It is smaller than that of the sample grown at 830 ℃. In X-ray diffraction (XRD) measurement, the high temperature grown GaN shows a (002) peak at 20° with a FWHM of 21'. It can be concluded that, although c-GaN is of metastable phase, high growth temperature is still beneficial to the improvement in its crystal quality. The relationship between the growth rate and growth temperature is also discussed.
Resumo:
We report on the epitaxial growth and the microstructure of cubic GaN. The layers are deposited by plasma-assisted molecular beam epitaxy on GaAs and Si substrates. Despite the extreme lattice mismatch between these materials, GaN grows in the metastable cubic phase with a well-defined orientation-relationship to the GaAs substrate including a sharp heteroboundary. The preference of the metastable phase and its epitaxial orientation originates in the interface structure which is found to be governed by a coincidence site lattice.
Resumo:
Mg-20Gd(%, mass fraction) samples were prepared using melt-spinning and copper mold casting techniques. Microstructures and properties of the Mg-20Gd were investigated. Results show that the melt-spun ribbon is mainly composed of supersaturated alpha-Mg solid solution phase and the as-east ingot mainly contains alpha-Mg solid solution and Mg5Gd phase. The differential scanning calorimeter (DSC) curve of the ribbon exhibits a small exothermic peak in the temperature range from 630 to 680 K, which indicates that the ribbon contains a metastable phase (amorphous). Tensile strength at room temperature of the melt-spun ribbon and as-cast specimen are 308 and 254 MPa, respectively. The elongations of the two samples are less than 2%. The fracture surfaces demonstrate that the fracture mode of the as-cast Mg-20Gd is a typical cleavage fracture and that of the melt-spun sample is a combination of brittle fracture and ductile fracture.
Resumo:
By in situ monitoring structural changes with the reflection spectrometer during the colloidal crystallization, we present direct experimental evidence of liquid-bcc-fcc phase transition in crystallization of charged colloidal particles, as a manifestation of the Ostwald's step rule. In addition, the lifetime of the bcc metastable structure in this system decreases significantly with increasing particle volume fraction, offering a possible explanation for "exceptions" to the step rule.
Resumo:
In this paper, the confined crystallization and phase transition behaviors of n-octadecane in microcapsules with a diameter of about 3 Pm were studied with the combination of differential scanning calorimetry (DSC), temperature dependent Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD).
Resumo:
The thermal stability of nanocrystalline clusters, the phase evolution, and their effects on magnetic Propertieswere studied for as-cast Nd60Al10Fe20Co10 alloy using differential scanning calorimetry curves, x-ray diffraction patterns, scanning electron microscopy, and high-resolution transition electron microscopy. Thermomagnetic curves and hysteresis loops of the bulk metallic glass were measured during the annealing process. The high thermostability of the hardmagnetic properties of the samples observed is attributed to the stability of the nanocrystalline clusters upon annealing, while the slight enhancement in the magnetization is due to the precipitation of some Nd-rich metastable phases. The mechanism of thermostability of the nanocrystalline clusters and the formation of the metastable phases are discussed.
Resumo:
The annealing behavior of the hexagonal phase content in cubic GaN (c-GaN) thin films grown on GaAs (001) by MOCVD is reported. C-GaN thin films are grown on GaAs (001) substrates by metalorganic chemical vapor deposition (MOCVD). High temperature annealing is employed to treat the as-grown c-GaN thin films. The characterization of the c-GaN films is investigated by photoluminescence (PL) and Raman scattering spectroscopy. The change conditions of the hexagonal phase content in the metastable c-GaN are reported. There is a boundary layer existing in the c-GaN/GaAs film. When being annealed at high temperature, the intensity of the TOB and LOB phonon modes from the boundary layer weakens while that of the E-2 phonon mode from the hexagonal phase increases. The content change of hexagonal phase has closer relationship with annealing temperature than with annealing time period.
Resumo:
Although metalorganic vapor phase epitaxy (MOVPE) is generally regarded as a non-equillibrium process, it can be assumed that a chemical equilibrium is established at the vapor-solid interface in the diffusion limited region of growth rate. In this paper, an equilibrium model was proposed to calculate the relation between vapor and solid compositions for II-VI ternary alloys. Metastable alloys in the miscibility gap may not be obtained when the growth temperature is lower than the critical temperature of the system. The influence of growth temperature, reactor pressure, input VI/II ratio, and input composition of group VI reactants has been calculated for ZnSSe, ZnSeTe and ZnSTe. The results are compared with experimental data for the ZnSSe and ZnSTe systems.
Resumo:
Metalorganic vapor-phase epitaxial growth of GaAs doped with isovalent Sb is reported. By increasing the trimethylantimony concentration during growth the total Sb concentration was varied between 1 X 10(17)-1 X 10(19) cm-3. A new deep level defect with an activation energy of the thermal emission rates of E(c) - 0.54 eV is observed. The defect concentration increases with increasing As partial pressure and with increasing Sb doping. It is also found that the EL2 concentration decreases with increasing Sb doping. The new energy level is suggested to be the 0/ + transition of the Sb(Ga) heteroantisite defect. No photocapacitance quenching effect, reflecting a metastable state as seen for EL2 (As(Ga)), is observed for Sb(Ga).
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymer systems, the micro-phase morphologies of the H-shaped (AC)B(CA) ternary block copolymer system are studied in three-dimensional (3D) space. By systematically varying the volume fractions of the components A, B, and C, six triangle phase diagrams of this H-shaped (AC)B(CA) ternary block copolymer system with equal interaction energies among the three components are constructed from the weaker segregation regime to the strong segregation regime, In this study, thirteen 3D micro-phase morphologies for this H-shaped ternary block copolymer system are identified to be stable and seven 3D microphase morphologies are found to be metastable.
Resumo:
The phase transition behaviors and corresponding structures of 6-{[(4'-([(undecyl)carbonyl]oxy)biphenyl-4yl)carbonyl]oxyl-l-hexyne (A4EE11) were investigated using differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and wide angle X-ray diffraction (WAXD). In comparison with the published homologues, 5- [(4'-heptoxy-biphenyl-4-yl)carbonyl]oxyl-1-pentyne (A3EO7) which shows a monotropic smectic A (SmA) phase and a metastable monotropic smectic C (SmC) phase; 5-{ [(4'-heptoxybiphenyl-4-yl)oxy]carbonyl)- I-pentyne (A3E'O7) that exhibits three enantiotropic stable liquid crystalline (LC) phases, SmA phase, SmC phase and smectic X (SmX) phase; 5-{[(4'-heptoxy-biphenyl-4-yl)carbonyl]oxy}-1-undecyne (A9EO7) which has a monotropic SmA phase and a metastable crystal phase, A4EE11 integrates the enantiotropy, monotropy and metastability of the LC phases of those three compounds. Upon cooling from isotropic state to room temperature, in the temperature range of 62.0 to 58.5 degrees C, A4EE11 shows an enantiotropic smectic A (SmA) phase with a layer spacing d=32.69 angstrom.