26 resultados para LAF3
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Divalent metal fluorides MF2 (M=Sr, Mg, Ca) in oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were synthesized. The densities, refractive indices and characteristic temperatures of synthesized glasses were measured. The influence of divalent metal fluorides MF2 (M=Sr, Mg, Ca) on the thermal stability of oxyfluoride tellurite glasses TeO2-BaF2-LaF3 were studied. Results show that the replacement of BaF2 by SrF2 and MgF2 can enhance the thermal stability against crystallization of the glass. A glass system with good thermal stability was produced, which could be a potential candidate for the host materials of the fiber devices.
Resumo:
abstract {LaF3 single-layer coatings were prepared by thermal boat evaporation at the deposition temperatures of 189, 255, 277 and 321°C respectively. The crystal structures of the coatings were characterized by X-ray diffraction (XRD). A spectrophotometer was employed to measure its transmittance. Moreover, refractive index, extinction coefficient and cut-off wavelength were obtained from the measured transmittance spectral curve. The residual stress was evaluated by the Stoney's equation and optical interferometer. Laser induce damage threshold (LIDT) was performed by a tripled Nd:YAG laser system. The results show that the crystallization status becomes better with the deposition temperature increasing. Correspondingly, the grain size also gets larger. Meanwhile, the coatings become more compact and the refractive index increases. However, the absorption of coatings seriously rises and the cut-off wavelength drifts to the long wave. In addition, the residual stress also increases and the intrinsic stress plays a determinant role in the coating. The LIDT of the coating also enhances at high temperature.}
Resumo:
A series of Nd3+-doped LaF3 nanoparticles with Nd3+ concentrations from 0.5 to 10 mol% were synthesized. The fluorescence intensity and lifetime of the nanoparticles at various Nd3+ doping concentration were investigated. The nanoparticles displayed strongest fluorescence intensity at 3 mol% Nd3+ concentration. Eighty-eight percentage quantum efficiency was obtained when the Nd3+ concentration was 0.5 mol%. Optical properties of nanoparticles were studied according to Judd-Ofelt theory. A larger emission cross-section, sigma(em), for F-4(3/2) -> I-4(11/2) transition of the Nd3+ ion was obtained as 3.21 x 10(-20) cm(2), which was two times of the currently reported value. The larger emission cross-section and strong fluorescence intensity demonstrate that these nanoparticles are promising materials for laser applications. (C) 2010 Published by Elsevier B. V.
Resumo:
The europium-doped LaF3 nanoparticles were prepared by refluxing method in glycerol/water mixture and characterized with X-ray diffraction(XRD), field emission scanning electron microscopy(FE-SEM), UV-vis diffuse reflectance spectrum, and photoluminescence spectra. The results of XRD indicated that the obtained LaF3: Eu3+ nanoparticles were well crystallized with a hexagonal structure. ne FE-SEM image illustrated that the LaF3: Eu3+ nanoparticles were spherical with an average size around 30 nm. Under irradiation of UV light, the emission spectrum of LaF3: Eu3+ nanoparticles exhibited the characteristic line emissions arising front the D-5(0)-> F-7(J), (J=1, 2, 3, 4) transitions of the Eu3+ ions, with the dominating emission centered at 590 nm. In addition, the emissions from the 51), level could be clearly observed due to the low phonon energies (-350 cm(-1)) of LaF3 matrix. The optimum doping concentration for LaF3: Eu3+ nanoparticles was determined to be 20mol.%.
Resumo:
LaF3. CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core-shell) 2D nanoplates have been successfully synthesized by a facile and effective hydrothermal process. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra as well as kinetic decays were used to characterize the samples. The experimental results indicate that the organic additive, trisodium citrate (Cit(3-)), as a shape modifier has the dynamic effect by adjusting the growth rate of different crystal facets, resulting in forming the anisotropic geometries of the final products. The possible formation mechanisms for different products have been presented. The CeF3, CeF3:Tb3+, and CeF3:Tb3+ @LaF3 (core/shell) nanoplates show characteristic emission of Ce3+ (5d-4f) and Tb3+ (f-f), respectively.
Resumo:
LaF3 : Eu3+ (5.0 mol-% EU3+) nanodisks with perfect crystallinity were successfully synthesized by a simple method. The synthesis was carried out in an aqueous solution at room temperature without the use of templates or organic additives, The mechanism of formation of the nanodisks was explored, and the fluoride source (KBF4) is believed to play a key role in controlling the morphology of the final product. Furthermore, the size of the disk can be simply moderated by varying the concentration of the initial reactants. The room-temperature photoluminescence of LaF3 : Eu3+ with different morphologies and sizes were also investigated, and the results indicate that the emission intensity of the product is strongly affected by their size, shape, and other factors.
Resumo:
CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles were prepared by the polyol method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), UV-vis absorption spectra, photoluminescence (PL) spectra, and lifetimes. The results of XRD indicate that the obtained CeF3, CeF3:Tb3+, and CeF3:Tb3+/LaF3 (core/shell) nanoparticles crystallized well at 200 degrees C in diethylene glycol (DEG) with a hexagonal structure. The TEM images illustrate that the CeF3 and CeF3:Tb3+ nanoparticles are spherical with a mean diameter of 7 nm. The growth of the LaF3 shell around the CeF3:Tb3+ core nanoparticles resulted in an increase of the average size (11 nm) of the nanopaticles as well as in a broadening of their size distribution. These nanocrystals can be well-dispersed in ethanol to form clear colloidal solutions. The colloidal solutions of CeF3 and CeF3:Tb3+ show the characteristic emission of Ce3+ 5d-4f (320 nm) and Tb3+ D-5(4)-F-7(J) (J = 6-3, with D-5(4)-F-7(5) green emission at 542 nm as the strongest one) transitions, respectively. The emission intensity and lifetime of the CeF3:Tb3+/LaF3 (core/shell) nanoparticles increased with respect to those of CeF3:Tb3+ core particles.
Resumo:
LaF3:Ce多晶中Ce3+的荧光发射谱由双峰带结构组成。Ce3+与其他稀土粒子共掺杂,Ce3+发射强度均降低,原因是一部分稀土离子(如Eu3+等)与Ce3+产生了电子转移;一部分稀土离子(如Er3+等)与Ce3+产生了能量传递。
Resumo:
探求新的具有优良的热学和光学性能的基质玻璃系统,是获得具有宽带宽和增益平坦的掺Er^3+光纤放大器(EDFA)的一种有效途径。制备了一种新型氧氟碲酸盐玻璃TeO2-BaF2-LaF3,并对其热学性能和光学性质进行了测试。应用乍得-奥菲尔特(Judd-Ofelt)理论计算了Er^3+离子的J-O理论参量和荧光寿命r。探讨了氟化物的引入对碲酸盐玻璃结构的改变的影响,并分析了其对玻璃的热学性质和光学性质的影响。实验发现,获得的氧氟碲酸盐玻璃具有优良的热学稳定性(△T=156.6C),宽的荧光半峰全宽(72nm)
Resumo:
用热舟蒸发方法在不同的沉积速率下制备了LaF3单层膜,并对部分单层膜进行了真空退火。分别采用X射线衍射(XRD),Lambda 900 光谱仪和355 nm Nd∶YAG脉冲激光测试了薄膜的晶体结构、透射光谱和激光损伤阈值(LIDT),并通过透射光谱计算得到样品的折射率和消光系数。实验结果表明,增大沉积速率有利于LaF3薄膜的结晶和择优生长,可以提高薄膜的致密性和折射率,但薄膜的抗激光损伤能力有所下降;沉积速率太大,又会恶化薄膜的结晶性能,同时薄膜中产生大量孔洞,薄膜的机械强度降低,导致薄膜的折射率减小和
Resumo:
研究了沉积温度对热舟蒸发氟化镧薄膜结构和光学性能的影响,沉积温度从200℃上升到350℃,间隔为50℃.采用分光光度计测量了样品的透射率和反射率光谱曲线,并在此基础上进行了光学损耗、光学常数以及带隙和截止波长的计算.采用表面轮廓仪进行了表面形貌和表面粗糙度的标定,采用X射线衍射(XRD)方法测量了不同沉积温度下样品的微结构.发现在短波长波段,随着沉积温度的升高,光学损耗增加,晶粒尺寸增大,表面粗糙度略有增加.不过散射损耗在光学损耗中所占比例均很小,光学损耗的增加主要由吸收损耗引起.随着沉积温度的升高,折射率与消光系数增大,带隙变小,相对应的截止波长向长波方向移动.
Resumo:
用热舟蒸发法结合修正挡板技术制备了355 nm LaF3/MgF2增透膜,并对部分样品进行了真空退火。采用Lambda 900光谱仪测试了增透膜的低反光谱和透射光谱,并考察了其光谱稳定性;使用脉冲8 ns的355 nm激光测试了增透膜的激光损伤阈值(LIDT);采用Normarski显微镜对增透膜的表面缺陷密度和破斑形貌进行了观察。实验结果表明,制备得到的增透膜的剩余反射率较低,光谱稳定性好;真空退火对增透膜的激光损伤阈值没有改善;增透膜的破环形貌为散点形式,结合破斑深度测试表明薄膜的破坏源于薄膜和基底界面的缺陷点。JGS1熔石英基底由于有好的表面状况、固有的高激光损伤阈值和以其为基底的增透膜具有更低的表面场强,使得其上的增透膜有更高的抗激光损伤能力。