7 resultados para Interface detection

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of the Indium segregation on the interface asymmetry in InGaAs/GaAs quantum wells have been studied by reflectance-difference spectroscopy (RDS). It is found that the anisotropy of the 2H1E (2HH --> 1E) transition is very sensitive to the degree of the interface asymmetry. Calculations taking into account indium segregation yield good agreement with the observed anisotropy structures. It demonstrates that the anisotropy intensity ratio of the 1L1E (1LH --> 1E) and 2H1E transitions measured by RDS can be used to characterize the interface asymmetry. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An immunosensor interface based on mixed hydrophobic self-assembled monolayers (SAMs) of methyl and carboxylic acid terminated thiols with covalently attached human Immunoglobulin G (hIgG), is investigated. The densely packed and organised SAMs were characterised by contact angle measurements and cyclic voltammetry. The effect of the non-ionic surfactant, Tween 20, in preventing nonspecific adsorption is addressed by ellipsometry during physical and covalent hIgG immobilization on pure and mixed SAMs, respectively. It is clearly demonstrated that nonspecific adsorption due to hydrophobic interactions of hIgG on methyl ended groups is totally inhibited, whereas electrostatic/hydrogen bonding interactions with the exposed carboxylic groups prevail in the presence of surfactant. Results of ellipsometry and Atomic Force Microscopy, reveal that the surface concentration of covalently immobilized hIgG is determined by the ratio of COOH/CH3-terminated thiols in SAM forming solution. Moreover, the ellipsometric data demonstrates that the ratio of bound anti-hIgG/hIgG depends on the density of hIgG on the surface and that the highest ratio is close to three. We also report the selectivity and high sensitivity achieved by chronoamperometry in the detection of adsorbed hIgG and the reaction with its antibody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a simple, label-free and regenerative method was proposed to study the interaction between aptamer and small molecule by using methylene blue (MB+) as an electrochemical indicator. A thiolated capture probe containing twelve bases was firstly self-assembled on gold electrode by gold-sulfur affinity. Aptamer probe containing thirty two bases, which was designed to hybridize with capture DNA sequence and specifically recognize adenosine, was then immobilized on the electrode surface by hybridization reaction. MB+ was abundantly adsorbed on the aptamer probe by the specific interaction between MB+ and guanine base in aptamer probe. MB+-anchored aptamer probe can be forced to dissociate from the sensing interface after adenosine triggered structure switching of the aptamer. The peak current of MB+ linearly decreased with the concentration of adenosine over a range of 2 x 10 (8)- x 10 (6) M with a detection limit of 1 x 10 (8) M. In addition, we examined the selectivity of this electrochemical biosensor for cytidine, uridine and guanosine that belonged to the nucleosides family and possessed 1 similar structure with adenosine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we report a simple method of fabricating silver and gold nanostructures at the air - water interface, which can be spontaneously assembled through the reduction of AgNO3 and HAuCl4 with ultraviolet (UV) irradiation in the presence of polyacrylic acid (PAA), respectively. It was found that the building blocks in the silver nanostructure are mainly interwoven silver nanofilaments, while those of the gold nanostructure are mainly different sizes of gold nanoparticles and some truncated gold nanoplates, and even coalescence into networks. At the air - water interface, these silver and gold nanostructures can be easily transferred onto the surface of indium tin oxide (ITO) slides and used for electrochemical measurements. After a replacement reaction with H2PdCl4, the silver nanostructure is transformed into a Ag - Pd bimetallic nanostructure, with good electrocatalytic activity for O-2 reduction. The gold nanostructure can also show high electrocatalytic activity to the oxidation of nitric oxide (NO) with a detection limit of about 10 mu M NaNO2 at S/N = 3.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new setup to couple capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection is described in which the electrical connection of CE is achieved through a porous section at a distance of 7 mm from the CE capillary outlet. Because the porous capillary wall allowed the CE current to pass through and there was no electric field gradient beyond that section, the influence of CE high-voltage field on the ECL procedure was eliminated. The porous section formed by etching the capillary with hydrofluoric acid after only one side of the circumference of 2-3 mm of polyimide coating of the capillary was removed, while keeping the polyimide coating on the other part to protect the capillary from HF etching makes the capillary joint much more robust since only a part of the circumference of it is etched. A standard three-electrode configuration was used in experiments with Pt wire as a counter electrode, Ag/AgCl as a reference electrode, and a 300-mum diameter Pt disk as a working electrode. Compared with CE-ECL conventional decoupler designs, the present setup with a porous joint has no added dead volume created.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, a novel monoaza-B15C5 derivative, N-(2-tosylamino)-isopentyl-monoaza-15-crown-5 (L), is used as an ionophore to facilitate alkali metal cations transfer across a water/1,2-dichloroethane (W/DCE) interface. Well-defined voltammetric behaviors are observed at the polarized W/DCE interfaces supported at micro- and nano-pipets except Cs+. The diffusion coefficient of this ionophore in the DCE phase is calculated to be equal to (3.3+/-0.2) x 10(-6) cm(2) s(-1). The experimental results indicate that a 1:1 (metal: ionophore) complex is formed at the interface with a TIC/TID mechanism. The selectivity of this ionophore towards alkali ions follows the sequence Na+ > Li+ > K+ > Rb+ > Cs+. The logarithm of the association constants (log beta(1)(0)) of the LiL+, NaL+, KL+ and RbL+ complexes in the DCE phase are calculated to be 10.6, 11.6, 9.0 and 7.1, respectively. The kinetic parameters are determined by steady-state voltammograms using nanopipets. The standard rate constants (k(0)) for Li+, Na+, K+ and Rb+ transfers facilitated by L are 0.54+/-0.05, 0.63+/-0.09, 0.51+/-0.04 and 0.46+/-0.06 cm s(-1), respectively. The pH values of aqueous solution have little effect on the electrochemical behaviors of these facilitated processes. The results predicate that this new type of ionophore might be useful to fabricate electrochemical sensor of sodium ion.