2 resultados para IMPLANT RESTORATIONS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Background: Subretinal microphotodiode array (MPDA) is a type of visual prosthesis used for the implantation in the subretinal space of patients with progressive photoreceptor cell loss. The present study aimed to evaluate the effect of materials for MPDA on the viability, apoptosis and barrier function of cultured pig retinal pigment epithelium (RPE) cells.Methods: Primary culture of pig RPE cells was performed and 24 pig eyes were used to start RPE culture. The third passage of the cultures was plated on different materials for MPDA and MPDAs. The tetrazolium dye-reduction assay (MTT) was used to determine RPE cell viability. Flow cytometry was measured to indicate the apoptosis rates of RPE cells on different materials. RPE cells were also cultured on microporous filters, and the transepithelial resistance and permeability of the experimental molecule were measured to determine the barrier function.Results: The data from all the methods indicated no significant difference between the materials groups and the control group, and the materials tested showed good biocompatibility.Conclusions: The materials for MPDA used in the present study had no direct toxicity to the RPE cells and did not release harmful soluble factors that affected the barrier function of RPE in vitro.
Resumo:
Thermally stable high-resistivity regions have been formed using hydrogen ion implantation at three energies (50, 100, and 180 keV) with three corresponding doses (6 X 10(14) 1.2 X 10(15), and 3 X 10(15) cm(-2)), oxygen implantation at 280keV with 2 X 10(14) cm(-2) as well as subsequent annealing at about 600 degrees C for 10-20s, in AlGaAs/GaAs multiple epitaxial heterojunction structure. After anncaling at 600 degrees C, the sheet resistivity increases by six orders more of magnitude from the as-grown values. This creation of high resistivity is different from that of the conventional damage induced isolation by H or O single implantation which becomes ineffective when anneal is carried out at 400-600 degrees C and the mechanism there of is discussed.