28 resultados para Hopf Bifurcations
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A low-dimensional Galerkin method, initiated by Noack and Eckelmann [Physica D 56, 151 (1992)], for the prediction of the flow field around a stationary two-dimensional circular cylinder in a uniform stream at low Reynolds number is generalized to the case of a rotating and translating cylinder. The Hopf bifurcation describing the transition from steady to time-periodic solution is investigated. A curve indicating the transitional boundary is given in the two-dimensional parameter plane of Reynolds number Re and rotating parameter alpha. Our results show that rotation may delay the onset of vortex street and decrease the vortex-shedding frequency. (C) 1996 American Institute of Physics.
Resumo:
The number, the angles of orientation and the stability in Rumyantsev Movchan's sense of oblique steady rotations of a symmetric heavy gyroscope with a cavity completely filled with a uniform viscous liquid, possessing a fixed point 0 on its symmetric axis. are given for various values of the parameters. By taking the square of the upright component of the angular momentum M2 as a control parameter, three types of bifurcation diagrams of the steady rotations, two types of jumps and two kinds of local catastrophes, one being the symmetric reduced cusp type and the other being of the symmetric reduced butterfly type, are obtained. By taking account of the M2-damping owing to the moment of unavoidable faint friction, two different modes for the gyroscope, initially in a stable quasi-steady upright rotation with a nutation angle theta(s) equal to zero, to topple over are found.
Resumo:
This study experimentally explored the fine structures of the successive period-doubling bifurcations of the time-dependent thermocapillary convection in a floating half zone of 10 cSt silicone oil with the diameter d (0)=3.00 mm and the aspect ratio A=l/d (0)=0.72 in terrestrial conditions. The onset of time-dependent thermocapillary convection predominated in this experimental configuration and its subsequent evolution were experimentally detected through the local temperature measurements. The experimental results revealed a sequence of period-doubling bifurcations of the time-dependent thermocapillary convection, similar in some way to one of the routes to chaos for buoyant natural convection. The critical frequencies and the corresponding fractal frequencies were extracted through the real-time analysis of the frequency spectra by Fast-Fourier-Transformation (FFT). The projections of the trajectory onto the reconstructed phase-space were also provided. Furthermore, the experimentally predicted Feigenbaum constants were quite close to the theoretical asymptotic value of 4.669 [Feigenbaum M J. Phys Lett A, 1979, 74: 375-378].
Resumo:
We study the wave dislocations with an induced gauge potential. The topological current characterized the wave dislocations is constructed with the dual of Abelian gauge field. And the topological charges and locations of the wave dislocations are determined by the phi-mapping topological current theory. Furthermore, it is shown that the knotted wave dislocations can be described with a Hopf invariant in the wave field. At last we discussed the evolution of the knotted wave dislocations.
Resumo:
处理了无界体中一无限长、有限宽的平面应变裂纹,对任意入射膨胀波的散射问题.这里采用了Wiener-Hopf技术及标准迭代方法,得到了二次反射波到达后的应力强度因子的解析表达式,并给出了数值结果.
Resumo:
实验研究了锐前缘轴对称钝体有缘分离剪切层发展演化的动力学过程,以及分离剪切层与外加声激励之间的非线性作用。结果表明,自然状态下,存在着亚谐频现象,分离剪切层的演化发展是通过涡合并方式实现的。从分离到再附,层流分离剪切层一般经过2次涡合并过程,湍流分离剪切层一般经过5次涡合并过程。混沌动力学分析表明,层流分离剪切层是经过Hopf分岔和周期倍分岔途径进入混沌状态的。
Resumo:
The transition process from steady convection to chaos is experimentally studied in thermocapillary convections of floating half zone. The onset of temperature oscillations in the liquid bridge of floating half zone and further transitions of the temporal convective behaviour are detected by measuring the temperature in the liquid bridge. The fast Fourier transform reveals the frequency and amplitude characteristics of the flow transition. The experimental results indicate the existence of a sequence of period-doubling bifurcations that culminate in chaos. The measured Feigenbaum numbers are delta(2) = 4.69 and delta(4) = 4.6, which are comparable with the theoretical asymptotic value delta = 4.669.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
electrostatic torsional nano-electro-mechanical systems (NEMS) actuators is analyzed in the paper. The dependence of the critical tilting angle and voltage is investigated on the sizes of structure with the consideration of vdW effects. The pull-in phenomenon without the electrostatic torque is studied, and a critical pull-in gap is derived. A dimensionless equation of motion is presented, and the qualitative analysis of it shows that the equilibrium points of the corresponding autonomous system include center points, stable focus points, and unstable saddle points. The Hopf bifurcation points and fork bifurcation points also exist in the system. The phase portraits connecting these equilibrium points exhibit periodic orbits, heteroclinic orbits, as well as homoclinic orbits.
Resumo:
The dynamic behaviour for nanoscale electrostatic actuators is studied. A two Parameter mass-spring model is shown to exhibit a bifurcation from the case excluding an equilibrium point to the case including two equilibrium points as the geometrical dimensions of the device are altered. Stability analysis shows that one is a stable Hopf bifurcation point and the other is an unstable saddle point. In addition, we plot the diagram phases, which have periodic orbits around the Hopf point and a homoclinic orbit passing though the unstable saddle point.
Resumo:
Cellular cell pattern evolution of cylindrically-diverging detonations is numerically simulated successfully by solving two-dimensional Euler equations implemented with an improved two-step chemical kinetic model. From the simulation, three cell bifurcation modes are observed during the evolution and referred to as concave front focusing, kinked and wrinkled wave front instability, and self-merging of cellular cells. Numerical research demonstrates that the wave front expansion resulted from detonation front diverging plays a major role in the cellular cell bifurcation, which can disturb the nonlinearly self-sustained mechanism of detonations and finally lead to cell bifurcations.
Resumo:
Elastodynamic stress intensity factor histories of an unbounded solid containing a semi-infinite plane crack that propagates at a constant velocity under 3-D time-independent combined mode loading are considered. The fundamental solution, which is the response of point loading, is obtained. Then, stress intensity factor histories of a general loading system are written out in terms of superposition integrals. The methods used here are the Laplace transform methods in conjunction with the Wiener-Hopf technique.
Resumo:
The influences of Casimir and van der Waals forces on the nano-electromechanical systems (NEMS) electrostatic torsional varactor are studied. A one degree of freedom, the torsional angle, is adopted, and the bifurcation behaviour of the NEMS torsional varactor is investigated. There are two bifurcation points, one of which is a Hopf bifurcation point and the other is an unstable saddle point. The phase portraits are also drawn, in which periodic orbits are around the Hopf bifurcation point, but the periodic orbit will break into a homoclinic orbit when meeting the unstable saddle point.
Resumo:
Unsteady and two-dimensional numerical simulation is applied to study the transition process from steady convection to turbulence via subharmonic bifurcation in thermocapillary convection of a liquid bridge in the half-floating zone. The results of numerical tests show clearly the fractal structure of period-doubling bifurcations, and frequency-locking at f/4, f/8, f/16 with basic frequency f is observed with increasing temperature difference. The Feigenbaum universal constant is given by the present paper as delta(4) = 4.853, which can be compared with the theoretical value 4.6642016.
Resumo:
The transition process from steady to turbulent convection via subharmonic bifurcation in thermocapillary convection of half floating zone was studied by numerical simulation and experimental test. Both approaches gave structure of period doubling bifurcations in the present paper, and the Feigenbaum universal law was checked for the system of thermocapillary convection.