7 resultados para High Mounted Stop Lamps.
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Fluorophosphate glass with 4 mol.% ErF3 content was prepared. The different scanning calorimetry was conducted. Raman spectrum, infrared transmission spectrum, absorption spectrum were measured. Fluorescence spectrum and lifetime of emission around 1.53 mu m were measured under 970 nm laser diode excitation. The metaphosphate content in the composition is limited, but the maximum phonon energy of glass amounts to 1290 cm- 1, and is comparatively high. The full width at half maximum is about 56 nm, and is wider than for most of the materials investigated. The measured lifetime of I-4(13/2) -> I-4(15/2) transition, contributed by the high phonon energy, inefficient interaction of Er3+ ions, and low water content, amounts to no less than 7.36 ms though the Er3+ concentration is high. This work might provide useful information for the development of compact optical devices.
Resumo:
Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.
Resumo:
A 1.55 mum Ge islands resonant-cavity-enhanced (RCE) detector with high-reflectivity bottom mirror was fabricated by a simple method. The bottom mirror was deposited in the hole formed by anisotropically etching in a basic solution from the back side of the sample with the buried SiO2 layer in silicon-on-insulator substrate as the etch-stop layer. Reflectivity spectrum indicates that the mirror deposited in the hole has a reflectivity as high as 99% in the range of 1.2-1.65 mum. The peak responsivity of the RCE detector at 1543.8 nm is 0.028 mA/W and a full width at half maximum of 5 nm is obtained. Compared with the conventional p-i-n photodetector, the responsivity of RCE detector has a nearly threefold enhancement. (C) 2004 American Institute of Physics.
Resumo:
A novel and simple way to prepare high-reflectivity bottom mirrors for Si-based micro-cavity devices is reported. The bottom mirror was deposited in the hole, which was etched from the backside of the sample by ethylenediamine-pyrocatechol-water solution with the buried Sio, layer in the silicon-on-insulator substrate as the etching-stop layer. The high-reflectivity of the bottom mirror deposited in the hole and the narrow hill width at half maximum of the cavity formed by this method both indicate the successful preparation of the bottom mirror for Si-based micro-cavity devices.
Resumo:
A novel asymmetric broad waveguide diode laser structure was designed for high power conversion efficiency (PCE). The internal quantum efficiency, the series resistance, and the thermal resistance were theoretically optimized. The series resistance and the thermal resistance were greatly decreased by optimizing the thickness of the P-waveguide and the P-cladding layers. The internal quantum efficiency was increased by introducing a novel strain-compensated GaAs_0.9P_0.1/InGaAs quantum well. Experimentally, a single 1-cm bar with 20% fill factor and 900 μm cavity length was mounted P-side down on a microchannel-cooled heatsink, and a peak PCE of 60% is obtained at 26.3-W continuous wave output power.The results prove that this novel asymmetric waveguide structure design is an efficient approach to improve the PCE.
Resumo:
Orange AlGaInP high brightness light emitting diodes (LEDs) were fabricated by low pressure metalorganic chemical vapor deposition(LP-MOCVD) technology. AlGaInP double heterojunction structure was used as active layer. 15 pairs of Al0.5Ga0.5As/AlAs distributed Bragg reflector and 7 mu m Al0.8Ga0.2As current spreading layer were employed to reduce the absorption of GaAs substrate and upper anode respectively. At 20mA the LEDs emitting wavelength was between 600-610nm with 18.3nm FWHM, 0.45mW radiation power and 1.7% external quantum efficiency. Brightness of the LED chips and LED lamps with 15 degrees viewing angle(2 theta(1/2)) reached 30mcd and 1000mcd respectively.
Resumo:
An on-line sample introduction technique in capillary gas chromatograph (CGC) for the analysis of high-pressure gas-liquid mixtures has been designed and evaluated. A sample loop of 0.05 muL and a washing solvent loop of 0.5 muL are mounted on a 10-port switching valve, which serves as the injection valve. A capillary resistor was connected to the vent of sample loop in order to maintain the pressure of the sample. Both the sample and the washing solvent are transferred into the split-injection port through a narrow bore fused silica capillary inserted into the injection liner through a septum. The volume of the liner is used both as the pressure-release damper and evaporation chamber of the sample. On-line analysis of both reactants and resultants in ethylene olimer reaction mixture at 5 MPa was carried out, which demonstrated the applicability of the technique. (C) 2004 Elsevier B.V. All rights reserved.