186 resultados para HOT-WALL CVD

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

4H-SiC layers have been homoepitaxially grown at 1500 degrees C with the use of a horizontal hot-wall chemical vapor deposition (CVD) system, which was built in the author's group. The typical growth rate was 2 mu m/h at a pressure of 40 Torr. The background donor concentration has been reduced to 2.3 x 10(15) cm(-3) during a prolonged growth run. It confirmed the idea that the high background concentration of thin films was caused by the impurities inside the susceptor and thermal insulator The FWHM of x-ray co-rocking curves show 9 similar to 15 aresecs in five different areas of a 32-mu m-thick 4H-SiC epilayer The free exciton peaks dominated in the near-band-edge low-temperature photoluminescence spectrum (LTPL), indicating high crystal quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

50mm 3C-SiC epilayers are grown on (100) and (111) Si substrates in a newly developed horizontal lowpressure hot-wall CVD reactor under different growth pressures and flow rates of H_2 carrier gas. The structure,electrical properties, and thickness uniformity of the 3C-SiC epilayers are investigated by X-ray diffraction (XRD) ,sheet resistance measurement, and spectroscopic ellipsometry. XRD patterns show that the 3C-SiC films have excellent crystallinity. The narrowest full widths at half maximum of the SIC(200) and (111) peaks are 0.41° and 0.21°, respectively. The best electrical uniformity of the 50mm 3C-SiC films obtained by sheet resistance measurement is 2.15%. A σ/mean value of ± 5.7% in thickness uniformity is obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get high quality 4H-SiC epilayers. Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates purchased from Cree is performed at a typical temperature of 1500 degrees C with a pressure of 40 Torr by using SiH4+C2H4+H-2 gas system. The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope, atomic force microscopy (AFM), x-ray diffraction, Raman scattering, and low temperature photoluminescence (LTPL). The background doping of 32 pm-thick sample has been reduced to 2-5 x 10(15) cm(-3). The FWHM of the rocking curve is 9-16 arcsec. Intentional N-doped and B-doped 4H-SiC epilayers are obtained by in-situ doping of NH3 and B2H6, respectively. Schottky barrier diodes with reverse blocking voltage of over 1000 V are achieved preliminarily.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Horizontal air-cooled low-pressure hot-wall CVD (LP-HWCVD) system is developed to get highly qualitical 4H-SiC epilayers.Homoepitaxial growth of 4H-SiC on off-oriented Si-face (0001) 4H-SiC substrates is performed at 1500℃ with a pressure of 1.3×103Pa by using the step-controlled epitaxy.The growth rate is controlled to be about 1.0μm/h.The surface morphologies and structural and optical properties of 4H-SiC epilayers are characterized with Nomarski optical microscope,atomic force microscopy (AFM),X-ray diffraction,Raman scattering,and low temperature photoluminescence (LTPL).N-type 4H-SiC epilayers are obtained by in-situ doping of NH3 with the flow rate ranging from 0.1 to 3sccm.SiC p-n junctions are obtained on these epitaxial layers and their electrical and optical characteristics are presented.The obtained p-n junction diodes can be operated at the temperature up to 400℃,which provides a potential for high-temperature applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A ZnTe layer grown on GaAs substrate by hot-wall epitaxy (HWE) was studied using transmission electron microscopy (TEM). For a (110) cross-sectional specimen, its (001) ZnTe/GaAs interface was analysed by large angle stereo-projection (LASP) and high resolution electron microscopy (HREM). In the LASP, a double diffraction occurred and moire fringes were formed, meanwhile misfit dislocations were revealled clearly by weak beam technique. In HREM, not only Lomer and 60 degrees types of misfit dislocations were observed, but also two types of stacking faults were analysed. The residual strain was estimated by both methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The in-situ p-type doping of 4H-SiC grown on off-oriented (0001) 4H-SiC substrates was performed with trimethylaluminum (TMA) and/or diborane (B2H6) as the dopants. The incorporations of Al and B atoms and their memory effects and the electrical properties of p-type 4H-SiC epilayers were characterized by secondary ion mass spectroscopy (SIMS) and Hall effect measurements, respectively. Both Al- and B-doped 4H-SiC epilayers were p-type conduction. It was shown that the profiles of the incorporated boron and aluminum concentration were in agreement with the designed TMA and B2H6 flow rate diagrams. The maximum hole concentration for the Al doped 4H-SiC was 3.52x10(20) cm(-3) with Hall mobility of about 1 cm(2)/Vs and resistivity of 1.6 similar to 2.2x10(-2) Omega cm. The heavily boron-doped 4H-SiC samples were also obtained with B2H6 gas flow rate of 5 sccm, yielding values of 0.328 Omega cm for resistivity, 5.3x10(18) cm(-3) for hole carrier concentration, and 7 cm(2)/VS for hole mobility. The doping efficiency of Al in SiC is larger than that of B. The memory effects of Al and B were investigated in undoped 4H-SiC by using SIMS measurement after a few run of doped 4H-SiC growth. It was clearly shown that the memory effect of Al is stronger than that of B. It is suggested that p-type 4H-SiC growth should be carried out in a separate reactor, especially for Al doping, in order to avoid the join contamination on the subsequent n-type growth. 4H-SiC PiN diodes were fabricated by using heavily B doped epilayers. Preliminary results of PiN diodes with blocking voltage of 300 V and forward voltage drop of 3.0 V were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoluminescence (PL) properties of ZnSe films grown by hot wall epitaxy are reported. The PL spectra show clear neutral donor-bound exciton peak; donor acceptor pair (DAP) peak, conduction band to acceptor (CA) peak, and their phonon replicas until fourth order. The conduction band to acceptor peak and it's phonon replicas exist until room temperature. From the ratio of PL intensities of DAP and CA peaks and their replicas, we obtain the Huang-Rhys factor S = 0.58, in agreement with other experiments for acceptor-bound exciton transitions. From the temperature dependence of PL intensities we derive the activation energy of thermal quenching process for the DAP transitions as about 7 meV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homoepitaxial growth of 4H-SiC on off-oriented Si-face(0001) substrates was performed by using the step-controlled epitaxy technique in a newly developed low-pressure hot-wall CVD (LP-HWCVD) system with a horizontal air-cooled quartz tube at around 1500 degreesC and 1.33 x 10(4) Pa by employing SiH4 + C2H4 + H-2. In-situ doping during growth was carried out by adding NH3 gas into the precursor gases. It was shown that the maximum Hall mobility of the undoped 4H-SiC epilayers at room temperature is about 430 cm(2) (.) V-1 (.) s(-1) with a carrier concentration of similar to 10(16) cm(-3) and the highest carrier concentration of the N-doped 4H-SiC epilayer obtained at NH3 flow rate of 3 sccm is about 2.7 x 10(21) cm(-3) with a mobility of 0.75 cm(2) (.) V-1 (.) s(-1). SiC p-n junctions were obtained by epitaxially growing N-doped 4H-SiC epilayers on Al-doped 4H-SiC substrates. The C - V characteristics of the diodes were linear in the 1/C-3 - V coordinates indicating that the obtained p-n junctions were graded with a built-in voltage of 2.7 eV. The room temperature electroluminescence spectra of 4H-SiC p-n junctions are studied as a function of forward current. The D-A pair recombination due to nitrogen donors and the unintentional, deep boron center is dominant at low forward bias, while the D-A pair recombination due to nitrogen donors and aluminum acceptors are dominant at higher forward biases. The p-n junctions could operate at temperature of up to 400 degreesC, which provides a potential for high-temperature applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High homoepitaxial growth of 4H-SiC has been performed in a home-made horizontal hot wall CVD reactor on n-type 4H-SiC 8 degrees off-oriented substrates in the size of 10 mm x 10 mm, using trichlorosilane (TCS) as silicon precursor source together with ethylene as carbon precursor source. Cross-section Scanning Electron Microscopy (SEM), Raman scattering spectroscopy and Atomic Force Microscopy (AFM) were used to determine the growth rate, structural property and surface morphology, respectively. The growth rate reached to 23 mu m/h and the optimal epilayer was obtained at 1600 degrees C with TCS flow rate of 12 seem in C/Si of 0.42, which has a good surface morphology with a low Rms of 0.64 nm in 10 mu mx10 mu m area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homoepitaxial growth of 4H-SiC on off-oriented n-type Si-face (0001) substrates was performed in a home-made hot-wall low pressure chemical vapor deposition (LPCVD) reactor with SiH4 and C2H4 at temperature of 1500 C and pressure of 20 Torr. The surface morphology and intentional in-situ NH3 doping in 4H-SiC epilayers were investigated by using atomic force microscopy (AFM) and secondary ion mass spectroscopy (SIMS). Thermal oxidization of 4H-SiC homoepitaxial layers was conducted in a dry O-2 and H-2 atmosphere at temperature of 1150 C. The oxide was investigated by employing x-ray photoelectron spectroscopy (XPS). 4H-SiC MOS structures were obtained and their C-V characteristics were presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epitaxial growth on n-type 4H-SiC 8°off-oriented substrates with a size of 10 × 10 mm~2 at different tem-peratures with various gas flow rates has been performed in a horizontal hot wall CVD reactor, using trichlorosilane (TCS) as a silicon precursor source together with ethylene as a carbon precursor source. The growth rate reached 23 μm/h and the optimal epilayer was obtained at 1600 ℃ with a TCS flow rate of 12 sccm in C/Si of 0.42, which has a good surface morphology with a low RMS of 0.64 nm in an area of 10 × 10μm~2. The homoepitaxial layer was oh-tained at 1500 ℃ with low growth rate (< 5μm/h) and the 3C-SiC epilayers were obtained at 1650 ℃ with a growth rate of 60-70μm/h. It is estimated that the structural properties of the epilayers have a relationship with the growth temperature and growth rate. Silicon droplets with different sizes are observed on the surface of the homoepitaxial layer in a low C/Si ratio of 0.32.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polycrystalline silicon thin films were prepared by hot-wire chemical vapor deposition ( HWCVD) on glass at 250 degreesC with W or Ta wire as the catalyzers. The structual and optoelectronic properties as functions of the filament temperature, deposition pressure and the filament-substrate distance were studied, and the optimized polycrystalline silicon thin films were obtained with X-c > 90 % ( X-c denotes the crystalline ratio of the film), crystal grain size about 30-40nm, R-d approximate to 0.8nm/s, sigma(d) about 10(-7) - 10(-6) Omega(-1) cm(-1), Ea(a) approximate to 0.5eV and E-opt less than or equal to 1.3eV.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of deposition gas pressure and H-2 dilution ratio (H-2/SiH4+CH4+H-2), generally considered two of dominant parameters determining crystallinity in beta-SiC thin films prepared by catalytic chemical vapor deposition (Cat-CVD), often called hot-wire CVD method, on the films properties have been systematically studied. As deposition gas pressure increase from 40 to 1000 Pa, the crystallinity of the films is improved. From the study of H-2 dilution ratio, it is considered that H-2 plays a role as etching gas and modulating the phases in beta-SiC thin films. On the basis of the study on the parameters, nanocrystalline beta-SiC films were successfully synthesized on Si substrate at a low temperature of 300degreesC. The Fourier Transform Infrared Spectroscopy (FTIR) and X-ray diffraction (XRD) spectra show formation of beta-SiC. Moreover, according to Sherrer equation, the average grain size of the films estimated is in nanometer-size. (C) 2003 Elsevier B.V. All rights reserved.