101 resultados para Fear of Self Questionnaire

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The frequency characteristics of a VCSEL with a quarter-wave plate (QWP) and an external reflector are investigated with the translation matrix of the vectorial field. Two series of eigenmode with a shift of half the free spectrum range are linearly polarized, respectively, along the neutral axes of QWP. We also numerically explore the polarization self-modulation phenomenon by using a vectorial laser equation and considering the inhomogeneous broadening of the gain medium. If the external cavity is so short that the shift is bigger than the homogeneous broadening, two stable longitudinal modes oscillate, respectively, on the neutral axes of QWP because they consume different carriers. With a long external cavity, the competition of the modes for the common carriers causes the intensity fluctuation of the modes with a period of one round-trip time of the external cavity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organised multilayers were formed from the controlled self-assembly of ferrocene alkyl thiols on Au(111) surfaces. The control was accomplished by increasing the concentration of the thiol solutions used for the assembly. Cyclic voltammetry, ellipsometry, scanning probe microscopy (STM and AFM) and in situ FTIR spectroscopy were used to probe the differences between mono- and multilayers of the same compounds. Electrochemical desorption studies confirmed that the multilayer structure is attached to the surface via one monolayer. The electrochemical behaviour of the multilayers indicated the presence of more than one controlling factor during the oxidation step, whereas the reduction was kinetically controlled which contrasts with the behaviour of monolayers, which exhibit kinetic control for the oxidation and reduction steps. Conventional and imaging ellipsometry confirmed that multilayers with well-defined increments in thickness could be produced. However, STM indicated that at the monolayer stage, the thiols used promote the mobility of Au atoms on the surface. It is very likely that the multilayer structure is held together through hydrogen bonding. To the best of out knowledge, this is the first example of a controlled one-step growth of multilayers of ferrocenyl alkyl thiols using self-assembly techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-organizing maps (SOM) have been recognized as a powerful tool in data exploratoration, especially for the tasks of clustering on high dimensional data. However, clustering on categorical data is still a challenge for SOM. This paper aims to extend standard SOM to handle feature values of categorical type. A batch SOM algorithm (NCSOM) is presented concerning the dissimilarity measure and update method of map evolution for both numeric and categorical features simultaneously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we briefly summarize two typical morphology characteristics of the self-organized void array induced in bulk of fused silica glass by a tightly focused femtosecond laser beam, such as the key role of high numerical aperture in the void array formation and the concentric-circle-like structure indicated by the top view of the void array. By adopting a physical model which combines the nonlinear propagation of femtosecond laser pulses with the spherical aberration effect (SA) at the interface of two mediums of different refractive indices, reasonable agreements between the simulation results and the experimental results are obtained. By comparing the fluence distributions of the case with both SA and nonlinear effects included and the case with only consideration of SA, we suggest that spherical aberration, which results from the refractive index mismatch between air and fused silica glass, is the main reason for the formation of the self-organized void array. (c) 2008 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Papaseit et al. (Proc. Nati. Acad. Sci. U.S.A. 97, 8364, 2000) showed the decisive role of gravity in the formation of patterns by assemblies of microtubules in vitro. By virtue of a functional scaling, the free energy for MT systems in a gravitational field was constructed. The influence of the gravitational field on MT's self-organization process, that can lead to the isotropic to nematic phase transition, is the focus of this paper. A coupling of a concentration gradient with orientational order characteristic of nernatic ordering pattern formation is the new feature emerging in the presence of gravity. The concentration range corresponding to a phase coexistence region increases with increasing g or NIT concentration. Gravity facilitates the isotropic to nernatic phase transition leading to a significantly broader transition region. The phase transition represents the interplay between the growth in the isotropic phase and the precipitation into the nematic phase. We also present and discuss the numerical results obtained for local NIT concentration change with the height of the vessel, order parameter and phase transition properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Via the combination of an electrospinning method with a hydrothermal reaction, a large-scale cedar-like hierarchical nanostructured TiO2 film with an anatase/rutile composite phase was fabricated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a quantum dot (QD) ensemble structure in which the in-plane arrangements of the dots are in a hexagonal way while the dots are also vertically aligned. Such a distinct lateral ordering of QDs is achieved on a planar GaAs(l 0 0) rather than on a prepatterned substrate by strain-mediated multilayer vertical stacking of the QDs. The analysis indicates that the strain energy of the lateral island-island interaction is minimum for arrangement of the hexagonal ordering. The ordered dots demonstrate strong photoluminescence (PL) emission at room temperature (RT) and the full width at half maximum of PL peak at RT is only 50 meV. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation process of InAs quantum dots (QDs) on vicinal GaAs (1 0 0) substrates is studied by atomic force microscopy (AFM). It is found that after 1.2 MLs of InAs deposition, while the QDs with diameters less than the width of the multi-atomic steps are shrinking, the larger QDs are growing. Photoluminescence measurements of the uncapped QDs correspond well to the AFM structure observations of the QDs. We propose that the QDs undergo an anomalous coarsening process with modified growth kinetics resulting from the restrictions of the finite terrace sizes. A comparison between the QDs on the vicinal GaAs (1 0 0) substrates and the QDs on the exact GaAs (1 0 0) further verifies the effect of the multi-atomic steps on the formation of QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the single-electron and two-electron vertically assembled quantum disks in an axial magnetic field using the effective mass approximation. The electron interaction is treated accurately by the direct diagonalization of the Hamiltonian matrix. We calculate the six energy levels of the single-electron quantum disks and the two lowest energy levels of the two-electron quantum disks in an axial magnetic field. The change of the magnetic field strongly modifies the electronic structures as an effective potential, leading to the splitting of the levels and the crossings between the levels. The effect of the vertical alignment on the electronic structures is discussed. It is demonstrated that the switching of the ground-state spin exists between S=0 and S=1. The energy difference DeltaE between the lowest S=0 and S=1 states is shown as a function of the axial magnetic field. It is also found that the variation of the energy difference between the lowest S=0 and S=1 states in the strong-B S=0 state is fairly linear. Our results provide a possible realization for a qubit to be fabricated by current growth techniques. (C) 2004 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the photoluminescence (PL) and structural properties of self-assembled InAs/GaAs quantum dots (QDs) covered by In0.2Al0.8As and In0.2Ga0.8As combination strain-reducing layer (SRL). By introducing a thin InAlAs layer, the ground state emission wavelength redshifts, and the energy splitting between the ground and first-excited states increases to 85 meV at 10 K. The energy splitting further increases to 92 meV and the temperature dependence of full width at half maximum (FWHM) changes for QDs with different SRL after the multi-stacking. These results are attributed to the fact that the combination layer has different effects on QDs compared to the InGaAs SRL.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A review is presented on recent research development of self-organized Ge/Si quantum dots (QDs). Emphasis is put on the morphological evolution of the Ge quantum dots grown on Si (001) substrate, the structure analysis of multilayer Ge QDs, the optical and electronic properties of these nanostructures, and the approaches to fabricating ordered Ge quantum dots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-aligned InAs quantum wires (QWRs) or three-dimensional (3D) islands are fabricated on GaAs(331)A substrates by molecular beam epitaxy (MBE). InAs QWRs are selectively grown on the step edges formed by GaAs layers. The surface morphology of InAs nanostructures is carefully investigated by atomic force microscopy (AFM) measurements. Different growth conditions, such as substrate temperature, growth approaches, and InAs coverage, exert a great effect on the morphology of InAs islands. Low substrate temperatures favour the formation of wirelike nanostructures, while high substrate temperatures favour 3D islands. The shape transition is attributed to the trade-off between surface energy and strain energy. A qualitative agreement of our experimental data with the theoretical results derived from the model proposed by Tersoff and Tromp is achieved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si nanoquantum dots have been formed by self-assembled growth on the both Si-O-Si and Si-OH bonds terminated SiO2 surfaces using the low-pressure chemical vapor deposition (LPCVD) and surface thermal decomposition of pure SiH4 gas. We have experimentally studied the variation of Si. dot density with Si-OH bonds density, deposition temperature and SiH4 pressure, and analyzed qualitatively the formation mechanism of the Si nanoquantum dots based on LPCVD surface thermal dynamics principle. The results are very. important for the control of the density and size of Si nanoquantum dots, and have potential applications in the new quantum devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-assembled semiconductor quantum dot is a new type of artificially designed and grown function material which exhibits quantum size effect, quantum interference effect, surface effect, quantum tunneling-Coulumb-blockade effect and nonlinear optical effect. Due to its advantages of less crystal defects and relatively simpler fabrication technology, this material may be of important value in the research of future nanoelectronic device. In the order of vertical transport, lateral transport and charge storage, recent advances in the electronic properties of this material are brefly introduced, and the problems and perspectives are analyzed.