437 resultados para Emission intensities

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: D-5(4) --> F-7(4)) and red (660 nm: D-5(4) --> F-7(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to D-5(4) (Tb3+) and the 477-nm UC luminescence of Tm3+ was nearly quenched. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nd3+ -codoped and Al3+-Nd3+-codoped high silica glasses have been prepared by sintering nanoporous glasses impregnated with Nd3+ stop and Al3+ ions. The Judd-Ofelt intensity parameters Omega(2,4,6) of Nd3+-doped high silica glasses were obtained and used to analyze aluminum codoping effects. Fluorescence properties of Nd3+-doped high silica glasses strongly depend on the Al3+ concentration. While Nd3+ ion absorption and emission intensities of obviously increase when aluminum is added to Nd3+-doped high silica glasses, fluorescence lifetimes decrease and aluminum codoping has almost no influence on the radiative quantum efficiencies. This indicates that aluminum codoping is responsible for an anti-quenching effect through a local modification of rare-earth environments rather than through physical cluster dispersion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have studied the spontaneous emission of polarized excitons in the GaInP/AlGaInP VCSEL from 30K to room temperature. It is observed that the spontaneous emission peak enters and leaves the resonant regime. At the resonant regime, the emission intensities of the perpendicular and horizontal polarized exciton are enhanced at different ratio to those in non-resonant regime. These experiment results are explained through the dressed exciton theory of the semiconductor microcavity device. From this theory, the intensity enhancement and the polarization dependence are understood as cooperative emission and the microcavity anisotropy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm3+/Yb3+-codoped oxyhalide tellurite glasses were investigated under 980nm excitation. The results showed that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at TM2O3% =0.1 mol%, and then decrease with increasing Tm2O3 content. The effect of TM2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effect of Yb2O3 content on upconversion luminescence and mechanisms in Yb3+-sensitized Tm3+-doped oxyhalide tellurite glasses were investigated under 980 nm excitation. Intense blue and relatively weak red upconversion emission centered at 476 and 649nm corresponding to the transitions (1)G(4) -> H-3(6) and (1)G(4) -> H-3(4) of Tm3+, respectively, are simultaneously observed at room temperature. The results show that upconversion blue and red emission intensities of Tm3+ first increase, reach its maximum at Yb2O3% = 3 mol%, and then decrease with increasing Yb2O3 content. The effect of Yb2O3 content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm3+. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

研究了La2O3对Yb:Y2O3透明陶瓷光谱性能的影响,添加适量La2O3以后,Yb:Y2O3透明陶瓷的吸收峰和发射峰的位置不变,但由于La^3+的离子半径大于Y^3+的离子半径,在Y2O3中引入La^3+离子后,导致Y2O3晶格常数变大,晶场强度变弱,同时降低了Y2O3晶体的有序度,致使发射峰强度有所下降,发射截面变小.过量的№La2O3(x=0.16)造成yb^3+激活离子发射强度明显下降;其荧光寿命在添加La2O3后总体增大45%-60%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of oxygen partial pressure on the structure and photoluminescence (PL) of ZnO films were studied. The films were prepared by direct current (DC) reactive magnetron sputtering with various oxygen concentrations at room temperature. With increasing oxygen ratio, the structure of films changes from zinc and zinc oxide phases, single-phase ZnO, to the (002) orientation, and the mechanical stresses exhibit from tensile stress to compressive stress. Films deposited at higher oxygen pressure show weaker emission intensities, which may result from the decrease of the oxygen vacancies and zinc interstitials in the film. This indicates that the emission in ZnO film originates from the oxygen vacancy and zinc interstitial-related defects. From optical transmittance spectra of ZnO films, the plasma edge shifts towards the shorter wavelength with the improvement of film stoichiometry. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two silicon light emitting devices with different structures are realized in standard 0.35 mu m complementary metal-oxide-semiconductor (CMOS) technology. They operate in reverse breakdown mode and can be turned on at 8.3 V. Output optical powers of 13.6 nW and 12.1 nW are measured at 10 V and 100 mA, respectively, and both the calculated light emission intensities are more than 1 mW/Cm-2. The optical spectra of the two devices are between 600-790 nm with a clear peak near 760 nm..

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under identical preparation conditions, Au/GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. (c) 2006 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature and pressure dependent measurements have been performed on 3.5 nm ZnS:Mn2+ nanoparticles. As temperature increases, the donor-acceptor (DA) emission of ZnS:Mn2+ nanoparticles at 440 nm shifts to longer wavelengths while the Mn2+ emission (T-4(1)-(6)A(1)) shifts to shorter wavelengths. Both the DA and Mn2+ emission intensities decrease with temperature with the intensity decrease of the DA emission being much more pronounced. The intensity decreases are fit well with the theory of thermal quenching. As pressure increases, the Mn2+ emission shifts to longer wavelengths while the DA emission wavelength remains almost constant. The pressure coefficient of the DA emission in ZnS:Mn2+ nanoparticles is approximately -3.2 meV/GPa, which is significantly smaller than that measured for bulk materials. The relatively weak pressure dependence of the DA emission is attributed to the increase of the binding energies and the localization of the defect wave functions in nanoparticles. The pressure coefficient of Mn2+ emission in ZnS:Mn2+ nanoparticles is roughly -34.3 meV/GPa, consistent with crystal field theory. The results indicate that the energy transfer from the ZnS host to Mn2+ ions is mainly from the recombination of carriers localized at Mn2+ ions. (C) 2002 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the spontaneous emission of polarized excitons in the GaInP/AlGaInP vertical-cavity surface-emitting lasers from 50 K to room temperature. It is observed that the spontaneous emission peak enters and leaves the resonant regime. At the resonant regime, the emission intensities of the perpendicularly and horizontally polarized excitons are enhanced and their proportions are different from that in nonresonant regime. These experimental results are explained by the dressed exciton theory of the semiconductor microcavity device. Based on this theory, the intensity enhancement and the polarization dependence are understood as cooperative emission and the microcavity anisotropy. (C) 2000 American Institute of Physics. [S0021-8979(00)05315-9].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report a facile route which is based Oil tuning doping concentration of Mn2+ ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn2+ dopant (orange-yellow) are sensitive to the Mn2+ doping concentration, due to the energy transfer from ZnS host to Mn2+ dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn2+-doped ZnS nanocrystals. Furthermore.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Luminescent and mesoporous europium-doped bioactive glasses (MBG:Eu) were successfully synthesized by a two-step acid-catalyzed self-assembly process combined with hydrothermal treatment in an inorganic-organic system. The obtained MBG was performed as a drug delivery carrier to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug. The structural, morphological, textural and optical properties were well characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), N-2 adsorption/desorption, and photoluminescence (PL) spectra, respectively. The results reveal that the MBG exhibit the typical ordered characteristics of the hexagonal mesostructure. This composite shows sustained release profile with ibuprofen as the model drug. The IBU-loaded samples still show red luminescence of Eu3+ (D-5(0)-F-7(1, 2)) under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system vary with the released amount of IBU, thus making the drug release be easily tracked and monitored by the change of the luminescence intensity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

By using metal nitrates and oxides as the starting materials, Y3Al5O12 (YAG) and YAG: RE3+ (RE: Eu, Dy) powder phosphors were prepared by solid state (SS), coprecipitation (CP) and citrate-gel (CG) methods, respectively. The resulting YAG based phosphors were characterized by XRD and photoluminescent excitation and emission spectra as well as lifetimes. The purified crystalline phases of YAG were obtained at 800degreesC (CG) and 900degreesC (CP and SS), respectively. Great differences were observed for the excitation and emission spectra of Eu3+ and Dy3+ between crystalline and amorphous states of YAG, and their emission intensities increased with increasing the annealing temperature. At an identical annealing temperature and doping concentration, the Eu3+ and Dy3+ showed the strongest and weakest emission intensity in CP- and CG-derived YAG phosphors, respectively. The poor emission intensity for CG-derived phosphors is mainly caused by the contamination organic impurities from citric acid in the starting materials. Furthermore, the lifetimes for the samples derived from CG and CP routes are shorter than those derived from the SS route.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Y2O3:Sm and Gd2O3:Sm powder phosphors were prepared by carbonate coprecipitation method. The purified crystalline phases of Y2O3:Sm and Gd2O3:SM were obtained at 600degreesC, and the crystallinity increases with increase in annealing temperature. Both samples contain aggregated phosphor particles. An energy transfer (ET) from Y2O3 and Gd2O3 hosts to sm(3+) has been observed, and the ET efficiency in the latter is higher than that in the former because an energy migration process like Gd3+-(Gd3+)(n)-Sm3+ has occurred in the latter. Furthermore, an upconversion luminescence from the (4)G(5/2) level of Sm3+ has been observed in both Y2O3 and Gd2O3 under the excitation of 936 nm infrared, whose mechanisms are proposed. Both the up and downconversion emission intensities of Sm3+ in Gd2O3 are stronger than those in Y2O3.