282 resultados para Cathode ray tubes
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Blue emitting GdNbO4: Bi3+ powder phosphors for field emission displays were prepared by a solid state reaction. Both photoluminescence and cathodoluminescence properties of the materials were investigated. GdNbO4 itself shows only a very weak luminescence in the blue spectral region. By doping Bi3+ in GdNbO4, the luminescence intensity was improved greatly. The emission spectrum of the GdNbO4: Bi3+ consists of a broad band with maximum at 445 nm (lifetime = 0.74 mu s; CIE chromaticity coordinates: x = 0.1519 and y = 0. 1196) for both UV and low voltage (1-7 kV) cathode ray excitation. In GdNbO4:Bi3+ phosphors, the energy transfer from NbO43- to activator Bi3+ occurred.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
Nanocrystalline Ge:H thin films were deposited simultaneously on both electrodes of a conventional capacitively coupled reactor for plasma enhanced chemical vapor deposition using highly H-2 diluted GeH4 as the source gas. The structure of the films was investigated by Raman scattering and X-ray diffraction as a function of substrate temperature, H-2 dilution, and r.f. power. The hydrogen concentrations and bonding configurations were determined by infrared absorption spectroscopy. For anodic deposition, the preferred crystallographic orientation and film crystallinity depend rather strongly on the deposition parameters. This dependence can be explained by changing surface mobilities of adsorbed precursors due to changes in the hydrogen coverage of the growing surface. Cathodic deposition is much less sensitive to variations in the deposition parameters. It generally results in films of high crystallinity with randomly oriented crystallizes. Some possible mechanisms for these differences between anodic and cathodic deposition are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Large area (25 mm(2)) silicon drift detectors and detector arrays (5x5) have been designed, simulated, and fabricated for X-ray spectroscopy. On the anode side, the hexagonal drift detector was designed with self-biasing spiral cathode rings (p(+)) of fixed resistance between rings and with a grounded guard anode to separate surface current from the anode current. Two designs have been used for the P-side: symmetric self-biasing spiral cathode rings (p(+)) and a uniform backside p(+) implant. Only 3 to 5 electrodes are needed to bias the detector plus an anode for signal collection. With graded electrical potential, a sub-nanoamper anode current, and a very small anode capacitance, an initial FWHM of 1.3 keV, without optimization of all parameters, has been obtained for 5.9 keV Fe-55 X-ray at RT using a uniform backside detector.
Resumo:
It has been found that cesium hydroxide (CsOH) doped tris(8-hydroxyquinoline) aluminum (Alq(3)) as an interfacial modification layer on indium-tin-oxide (ITO) is an effective cathode structure in inverted bottom-emission organic light-emitting diodes (IBOLEDs). The efficiency and high temperature stability of IBOLEDs with CsOH:Alq(3) interfacial layer are greatly improved with respect to the IBOLEDs with the case of Cs2CO3:Alq(3). Herein, we have studied the origin of the improvement in efficiency and high temperature stability via the modification role of CsOH:Alq(3) interfacial layer on ITO cathode in IBOLEDs by various characterization methods, including atomic force microscopy (AFM), ultraviolet photoemission spectroscopy (UPS), X-ray photoemission spectroscopy (XPS) and capacitance versus voltage (C-V). The results clearly demonstrate that the CsOH:Alq(3) interfacial modification layer on ITO cathode not only enhances the stability of the cathode interface and electron-transporting layer above it. which are in favor of the improvement in device stability, but also reduces the electron injection barrier and increases the carrier density for current conduction, leading to higher efficiency.
Resumo:
A simple way to synthesize beta-Ga2O3 nanoribbons and tubes by electrospinning is introduced. The diameters of the electrospun fibers range from 150 nm to 2.5 mu m and their lengths reach up to several millimeters. The relationship among precursors, precursor concentrations, and crystal growth of beta-Ga2O3 nanoribbons and tubes are discussed. The structures of beta-Ga2O3 fibers have been investigated by various methods such as thermogravimetric (TG) and differential thermal analysis (DTA), X-ray diffraction, FT-IR, Raman spectra, scanning electron micrograph (SEM), and transmission electron micrograph (TEM).
Resumo:
A new X-ray diffraction method for characterising thermal mismatch stress (TMS) in SiCw–Al composite has been developed. The TMS and thermal mismatch strain (TMSN) in SiC whiskers are considered to be axis symmetrical, and can be calculated by measuring the lattice distortion of the whiskers. Not only the average TMS in whiskers and matrix can be obtained, but the TMS components along longitudinal and radial directions in the SiC whiskers can also be deduced. Experimental results indicate that the TMS in SiC whiskers is compressive, and tensile in the aluminium matrix. The TMS and TMSN components along the longitudinal direction in the SiC whiskers are greater than those along the radial direction for a SiCw–Al composite quenched at 500°C.
Resumo:
介绍脉冲X光机和医用X光机的特性,应用这两种设备进行一系列饱和砂土的冲击加载实验。利用医用X光机拍摄到了饱和砂土在冲击载荷作用下产生的横断裂缝、纵向排水通道以及密实沉降的照片,得到了横断裂缝和纵向排水通道的出现规律,从而为研究饱和砂土冲击液化后结构破坏与密实沉降的机理提供了一种实验观测手段。
Resumo:
Since convective boiling or highly subcooled single-phase forced convection in micro-channels is an effective cooling mechanism with a wide range of applications, more experimental and theoretical studies are required to explain and verify the forced convection heat transfer phenomenon in narrow channels. In this experimental study, we model the convective boiling behavior of water with low latent heat substance Freon 113 (R-113), with the purpose of saving power consumption and visualizing experiments. Both heat transfer and pressure drop characteristics were measured in subcooled and saturated concentric narrow gap forced convection boiling. Data were obtained to qualitatively identify the effects of gap size, pressure, flow rate and wall superheat on boiling regimes and the transition between various regimes. Some significant differences from unconfined forced convection boiling were found,and also, the flow patterns in narrow vertical annulus tubes have been studied quantitatively.
Resumo:
The experimental results for the excited time of the nonequlibrium radiation and the ionization behind strong shock waves are presented. Using an optical multichannel analyzer, InSb infrared detectors and near-free-molecular Langmuir probes, the infrared radiation, the electron density of air and the nonequilibrium radiation spectra at different moments of the relaxation process in nitrogen test gas behind normal shock waves were obtained, respectively, in hydrogen oxygen combustion driven shock tubes.
Resumo:
A numerical study on shocked flows induced by a supersonic projectile moving in tubes is described in this paper. The dispersion-controlled scheme was adopted to solve the Euler equations implemented with moving boundary conditions. Four test cases were carried out in the present study: the first two cases are for validation of numerical algorithms and verification of moving boundary conditions, and the last two cases are for investigation into wave dynamic processes induced by the projectile moving at Mach numbers of M-p = 2.0 and 2.4, respectively, in a short time duration after the projectile was released from a shock tube into a big chamber. It was found that complex shock phenomena exist in the shocked flow, resulting from shock-wave/projectile interaction, shock-wave focusing, shock-wave reflection and shock-wave/contact-surface interactions, from which turbulence and vortices may be generated. This is a fundamental study on complex shock phenomena, and is also a useful investigation for understanding on shocked flows in the ram accelerator that may provide a highly efficient facility for launching hypersonic projectiles.
Resumo:
The measurement of void fraction is of importance to the oil industry and chemical industry. In this article, the principle and mathematical method of determining the void fraction of horizontal gas-liquid flow by using a single-energy gamma-ray system is described. The gamma-ray source is the radioactive isotope of Am-241 with gamma-ray energy of 59.5 keV. The time-averaged value of the void fraction in a 50.0-mm i.d. transparent horizontal pipeline is measured under various combinations of the liquid flow and gas flow. It is found that increasing the gas flow rate at a fixed liquid flow rate would increase the void fraction. Test data are compared with the predictions of the correlations and a good agreement is found. The result shows that the designed gamma-ray system can be used for measuring the void fraction in a horizontal gas-liquid two-phase flow with high accuracy.
Resumo:
An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.