92 resultados para Carrier confinements

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depth profiles of carrier concentrations in GaMnSb/GaSb are investigated by electrochemistry capacitance-voltage profiler and electrolyte of Tiron. The carrier concentration in GaMnSb/GaSb measured by this method is coincident with the results of Hall and X-ray diffraction measurements. It is indicated that most of the Mn atoms in GaMnSb take the site of Ga, play a role of acceptors, and provide shallow acceptor level(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanics and surface microtopology of the molecular carrier influence cell adhesion, but the mechanisms underlying these effects are not well understood. We used a micropipette adhesion frequency assay to quantify how the carrier stiffness and microtopology affected two-dimensional kinetics of interacting adhesion molecules on two apposing surfaces. Interactions of P-selectin with P-selectin glycoprotein ligand-1 (PSGL-1) were used to demonstrate such effects by presenting the molecules on three carrier systems: human red blood cells (RBCs), human promyelocytic leukemia HL-60 cells, and polystyrene beads. Stiffening the carrier alone or in cooperation with roughing the surface lowered the two-dimensional affinity of interacting molecules by reducing the forward rate but not the reverse rate, whereas softening the carrier and roughing the surface had opposing effects in affecting two-dimensional kinetics. In contrast, the soluble antibody bound with similar three-dimensional affinity to surface-anchored P-selectin or PSGL-1 constructs regardless of carrier stiffness and microtopology. These results demonstrate that the carrier stiffness and microtopology of a receptor influences its rate of encountering and binding a surface ligand but does not subsequently affect the stability of binding. This provides new insights into understanding the rolling and tethering mechanism of leukocytes onto endothelium in both physiological and pathological processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) kinetics of receptor-ligand interactions governs cell adhesion in many biological processes. While the dissociation kinetics of receptor-ligand bond is extensively investigated, the association kinetics has much less been quantified. Recently receptor-ligand interactions between two surfaces were investigated using a thermal fluctuation assay upon biomembrane force probe technique (Chen et al. in Biophys J 94:694-701, 2008). The regulating factors on association kinetics, however, are not well characterized. Here we developed an alternative thermal fluctuation assay using optical trap technique, which enables to visualize consecutive binding-unbinding transition and to quantify the impact of microbead diffusion on receptor-ligand binding. Three selectin constructs (sLs, sPs, and PLE) and their ligand P-selectin glycoprotein ligand 1 were used to conduct the measurements. It was indicated that bond formation was reduced by enhancing the diffusivity of selectin-coupled carrier, suggesting that carrier diffusion is crucial to determine receptor-ligand binding. It was also found that 2D forward rate predicted upon first-order kinetics was in the order of sPs > sLs > PLE and bond formation was history-dependent. These results further the understandings in regulating association kinetics of surface-bound receptor-ligand interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel scheme to eliminate the artificial background phase jitter is proposed for measuring the carrier-envelope phase drift of tunable infrared femtosecond pulses from an OPA laser. Different from previous methods, a reference spectral interference measurement is performed, which reveals the artificial phase jitter in the measurement process, in addition to the normal f-to-2f interference measurement between the incident laser pulses and it second harmonic. By analyzing the interference fringes, the accurate CEP fluctuation of the incident pulses is obtained. (c) 2008 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the carrier-wave Rabi flopping effects in an asymmetric semiparabolic semiconductor quantum well (QW) with few-cycle pulse. It is found that higher spectral components of few-cycle ultrashort pulses in the semiparabolic QW depend crucially on the carrier-envelope phase (CEP) of the few-cycle ultrashort pulses: continuum and distinct peaks can be achieved by controlling the CEP. Our results demonstrate that by adjusting the CEP of few-cycle ultrashort pulses, the intersubband dynamics in the asymmetric semiparabolic QW can be controlled in an ultrashort timescale with moderate laser intensity. (c) 2008 Optical Society of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate carrier-envelope phase dependence of few-cycle ultrashort laser pulse propagation in a polar molecule medium. Our results show that a soliton pulse can be generated during the two-photon resonant propagation of few-cycle pulse in the polar molecule medium. Moreover, the main features of the soliton pulse, such as pulse duration and intensity, depend crucially on the carrier-envelope phase of the incident pulse, which could be utilized to determine the carrier-envelope phase of a few-cycle ultrashort laser pulse from a mode-locked oscillator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel scheme is proposed to transform a Gaussian pulse to a millimeter-wave frequency modulation pulse by using an apodized Moire fiber Bragg grating in radio-over-fiber system. The relation between the input and output pulses is analyzed theoretically by Fourier transformation method and the requirements for the proposed fiber grating are presented. An apodized Moire fiber Bragg grating is designed and its characteristics are studied. It is shown that the proposed device is feasible, and the new scheme is believed to be an effective solution for the generation of millimeter-wave sub-carrier in future radio-over-fiber systems. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a novel method of one-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency for full range imaging. The spatial carrier frequency is introduced into the 2-D spectral interferogram in the lateral direction by using a tilted reference wavefront. This spatial-carrier- contained 2-D spectral interferogram is recorded with one shot of a 2-D CCD camera, and is Fourier-transformed in the lateral direction to obtain a 2-D complex spectral interferogram by a spatial-carrier technique. A full-range tomogram is reconstructed from the 2-D complex spectral interferogram. The principle of this method is confirmed by cross-sectional imaging of a glass slip object. (c) 2008 Society of Photo-Optical Instrumentation Engineers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The femtosecond pump-probe technique was used to study the carrier dynamics of amorphous Ge2Sb2Te5 films. With carrier density at around 10(20)-10(21) cm(-3), carriers were excited within 1 ps and recovered to the initial state for less than 3 ns. On the picosecond time scale, the carrier relaxation consists of two components: a fast process within 5 ps and a slow process after 5 ps. The relaxation time of the fast component is a function of carrier density, which increases from 1.9 to 4.3 ps for the carrier density changing from 9.7x10(20) cm(-3) to 3.1x10(21) cm(-3). A possible interpretation of the relaxation processes is elucidated. In the first 5 ps the relaxation process is dominated by an intraband carrier relaxation and the carrier trapping. It is followed by a recombination process of trapped carriers at later delay time. (c) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the lineshape analysis of the beat signal between the optical carrier and the shifted and delayed side-bands produced by sinusoidal amplitude modulation. It is shown that the beat signal has a typical lineshape with a very narrow delta-peak superposed on a quasi-Lorentzian profile. Theoretical explanation for the appearance of this peak has been given based on optical spectral structure constructed by a large number of optical wave trains. It is predicted that the delta-peak is originated from the beat between the wave trains in the carrier and those in the delayed sidebands when their average coherence length is longer than the delay line. Experiments carried out using different delay lines clearly show that the delta-peak is always located at the modulation frequency and decreases with the increasing delay line. Our analysis explicitly indicates that the linewidth is related to the observation time. It is also suggested that the disappearance of the delta-peak can be used as the criterion of coherence elimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using spatially resolved cathodoluminescence spectroscopy, we investigate the spatial luminescence distribution in a fully strained (In,Ga)N layer, in particular, its correlation with the distribution of threading dislocations (TDs). Regarding the impact of TDs on the luminescence properties, we can clearly distinguish between pure edge-type TDs and TDs with screw component. At the positions of both types of TDs, we establish nonradiative recombination sinks. The radius for carrier capture is at least four times larger for TDs with screw component as for pure edge-type TDs. The large capture radius of the former is due to a spiral-like growth mode resulting in an increase in the In content in the center of the spiral domains in comparison to their periphery.